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ABSTRACT 

The paucity of research into the environmental requirements, stock membership, 

abundance and residency patterns of bottlenose dolphins (Tursiops truncatus) in coastal 

Louisiana creates difficulty in understanding how local ecosystems and threats (such as fishery 

interactions, habitat degradation and pollution) affect populations.  This study combined fine-

scale environmental measurements and photo-identification techniques to describe patterns of 

habitat usage and abundance of bottlenose dolphins in lower Barataria Basin from June 1999 to 

May 2002.  In addition I investigated the validity and limitations of using mark-recapture models 

to estimate abundance from cetacean photo-identification data.   

Bottlenose dolphins were present year-round in a wide range of water temperature (10.9 – 

33.9 ºC), dissolved oxygen levels (3.7 – 16.6 mg/L), salinities (11.7 – 31.5 psu), turbidity levels 

(1.4 – 34.0 NTU), distances from shore (3 – 800 m), and water depths (0.4 - 12.5 m).   However, 

feeding activity was concentrated in a narrower range of conditions, 20 – 24 ºC water 

temperature, 6 – 9 mg/L of dissolved oxygen, turbidity values between 20 – 28 NTU, 200 – 500 

m from shore, and depths of 4 – 6 m.  Spatial mapping showed differences in the seasonal 

distribution of individuals and a tendency for feeding activity and larger group sizes to be 

concentrated in passes.  Using distinctive natural markings present on dorsal fins, I identified 133 

individual dolphins.  Closed-population models were improved by inclusion of temporal and 

individual heterogeneity as sources of sighting variability and produced estimates of between 

138 and 238 (95% CL range = 128 – 297) bottlenose dolphins for the study area.  Analysis of 

Jolly-Seber model assumptions demonstrated the importance of ensuring cetacean surveys 

accurately represent temporal, geographic and demographic properties of a study population.  In 

addition such factors as non-preferential image acquisition, group size, gender, behavior, 
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stability and distinctiveness of natural markings, weather conditions and boat traffic must be 

considered.  Evidence of a relatively closed Barataria Basin population agrees with current 

assumptions that bay bottlenose dolphin stocks are distinct from those found in deeper, offshore 

waters.  Furthermore, the characterization of environmental usage patterns for this bay 

population strengthens adequate description and management of this relatively discrete Gulf of 

Mexico bottlenose dolphin stock.   
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CHAPTER I 

INTRODUCTION:  ASSESSING ABUNDANCE AND ENVIRONMENTAL HABITAT 
USAGE PATTERNS OF BOTTLENOSE DOLPHINS IN COASTAL LOUISIANA  

 
The Order Cetacea includes all species of whales, dolphins and porpoises.  Members of 

this order display a wide variety of distributional ranges, social structures, foraging styles and 

life-history strategies (Reeves et al. 2002).  The bottlenose dolphin (Tursiops truncatus) is one of 

the most commonly studied cetacean’s worldwide (Leatherwood and Reeves 1990).  Bottlenose 

dolphins inhabit both coastal and offshore waters within tropical to temperate latitudes, as 

evidenced by research studies conducted in such locations as Scotland (Wilson et al. 1999), the 

Gulf of Mexico (Shane 1980, Wells and Scott 1990), Mexico (Ballance 1992), Portugal (Harzen 

1998), Belize (Grigg and Markowitz 1997), Australia (Connor and Smolker 1985), New Zealand 

(Williams et al. 1993), South Africa (Cockroft et al. 1990), and Argentina (Wursig and Wursig 

1977).  The variability in observed behavior and demographic parameters for these studies 

indicates the flexibility and adaptability of bottlenose dolphins in different marine environments.  

Individual bottlenose dolphins have relatively robust bodies with a medium sized beak and 

moderately tall, falcate dorsal fins (Reeves et al. 2002).  Males attain a slightly larger size than 

females.  Body color may be any tone of gray, with darker colors occurring dorsally while the 

belly is typically off-white or pinkish in color.  Calves are usually born during the warmer 

months and remain associated with their mother for at least 18 months, though more commonly 

about three years.  Group sizes may vary anywhere from 2-15 in inshore areas, up to more than 

100 individuals in offshore schools.  Threats to bottlenose dolphins include sharks, habitat 

degradation, fishery interactions and pollution.  Depressed immune systems believed to be a 

result of viral infections have been linked to major die-offs along the U.S. Atlantic and Gulf of 

Mexico coasts (Reeves et al. 2002).   
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The paucity of research into bottlenose dolphin populations in coastal Louisiana creates 

doubt as to present-day population size, habitat requirements, and spatial and temporal 

movement patterns within the region.  This dissertation focuses on characterizing abundance 

trends and environmental habitat usage patterns of bottlenose dolphins in a Louisiana coastal bay 

system.  These objectives were achieved by conducting monthly habitat utilization and photo-

identification surveys in lower Barataria and Caminada bays (Chapter II and IV).  In addition I 

critically reviewed the assumptions and validity of the Jolly-Seber (J-S) model as it is commonly 

used to estimate population size from cetacean photo-identification data (Chapter III).   

The Gulf of Mexico covers approximately 1,500,000 km2 with an average depth of 1,700 

m (Gore 1992).  The principal oceanographic features for the northern Gulf of Mexico (nGOM) 

region include wind stress, the Loop Current, and discharge from the Mississippi and 

Atchafalaya rivers.  The most distinctive circulation feature in the nGOM is the Loop Current 

(Gore 1992).  Warm waters from the Caribbean enter the gulf through the Yucatan Channel and 

continue north along the west coast of Florida.  These waters then turn clockwise and head south 

until eventually exiting through the Straits of Florida.  On an annual to semi-annual basis eddies 

separate from the Loop Current and move west.  These warm-core eddies rotate clockwise as 

they transverse the Gulf waters in anywhere from a few months to a year when they reach the 

shallower depths of the continental shelf and disintegrate.  The Louisiana coast has undergone 

significant changes in the last half century due to factors such as continued leveeing of the 

Mississippi and Atchafalaya rivers, eustatic sea level rise (Day et al. 1995), canal dredging 

(Turner 1997), and both natural and anthropogenic subsidence.  In fact, coastal wetland losses 

from 1955 to 1978 are estimated to be as high as 12,700 ha per annum (Baumann and Turner 

1990).  The low-lying inland wetlands include marsh grasses, submerged aquatic vegetation and 
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estuarine ponds (Chesney et al. 2000).  These estuarine areas are known to provide important 

habitat to juvenile fishes and crustaceans (Baltz et al. 1998) and have high primary productivity 

rates (Day et al. 1989, Garrison 1999).  Repercussions of wetland loss and ecosystem alterations 

on coastal Louisiana marine mammal populations are unknown. 

A variety of cetaceans have been observed in offshore regions of the Gulf of Mexico 

(Waring et al. 2002).  Whales in deep Gulf of Mexico waters (greater than 200 m) include sperm 

(Physeter macrocephalus), Bryde’s (Balaenopotera edeni), Cuvier’s beaked (Ziphius 

cavirostris), Blaineville’s beaked (Mesopolodon densirostris), Gervais’ beaked (Mesoplodon 

europaeus), dwarf and pygmy sperm (Kogia sima and Kogia breviceps), melon-headed 

(Peponocephala electra) and short-finned pilot (Globicephala macrorhynchus).  Oceanic 

dolphins in these same deep waters include Atlantic spotted (Stenella frontalis), bottlenose 

(Tursiops truncatus), pantropical spotted (Stenella attenuata), striped (Stenella coeruleoabla), 

spinner (Stenella longirostris), rough-toothed (Steno bredanensis), clymene (Stenella clymene), 

frasier’s (Lagenodelphis hosei), and risso’s (Grampius griseus).  Included in this same category 

are the killer whale (Orcinus orca), as well as the false (Pseudorca crassidens) and pygmy 

(Feresa attenuata) killer whale species.   

Bottlenose and Atlantic spotted dolphins are the only cetaceans that have been reported 

for inshore (depths less than 20 m) regions of the Gulf of Mexico.  Inshore and offshore 

bottlenose dolphin populations in the Gulf of Mexico waters are believed to be distinctive 

(Waring et al. 2002).  This assertion is based on the detection of hematological differences 

between coastal and offshore Tursiops individuals (Duffield et al. 1983, Duffield and Wells 

1986) and the assumption that movement between relatively dissimilar marine ecosystems is 

limited.  The 2002 U. S. Atlantic and Gulf of Mexico marine mammal stock assessments 
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(Waring et al. 2002) recognize inshore bottlenose dolphin stocks in the outer continental shelf, 

coastal regions (west, north and east), as well as numerous bays, sounds and estuaries.  

Population estimates are available for only three of the six inshore estuarine bottlenose dolphin 

stocks in Louisiana waters (Waring et al. 2002), i.e., Bay Boudreau/Mississippi Sound region (n 

= 1401), Terrebonne/Timbalier Bay complex (n = 100), and Barataria Bay (n = 219).  These 

estimates were based on aerial line-transect data collected in September and October of 1993 

(Blaylock and Hoggard 1994).  Other research into the coastal bottlenose dolphin populations of 

Louisiana has been infrequent and irregular.    

Habitat usage patterns (Chapter II) were examined using a fine-scale microhabitat 

approach (Saucier and Baltz 1993, Baltz et al. 1998).  A microhabitat is a three-dimensional 

description of physical and chemical parameters at a point in space-time where a particular 

organism exists.  Obviously these attributes are transitory, yet compilation of a large number of 

intensive microhabitat observations allows the environmental fluctuation, range and selection of 

a focal species to be characterized.  This approach has been used to define spawning site 

selection (Saucier and Baltz 1993) as well as growth and recruitment factors (Baltz et al. 1998) 

for coastal Louisiana fishes.  For my study, environmental variables used to characterize patterns 

of bottlenose dolphin habitat utilization were water temperature, dissolved oxygen, salinity, 

turbidity, distance to shore and water depth.  Additionally, temporal variables including time of 

day, month, season and year were considered.  Bottlenose dolphins were observed in Barataria 

Basin every month throughout the duration of the study despite significant seasonal variation in 

temperature, dissolved oxygen, salinity and turbidity.  Variability in overall distribution of 

dolphin sighting locations were examined using a principal components analysis.  Patterns of 

variability could be primarily attributed to season (i.e., negative correlation of temperature and 
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dissolved oxygen), space-time (evident via a positive relationship between salinity and turbidity 

values) and a three-dimensional spatial component (evident with a connection between depth and 

distance to shore).  Important factors in feeding sites were investigated using a logistic regression 

analysis.  Minimum group size, temperature, turbidity and season were all determined to be 

significant in describing feeding versus non-feeding locations.  In a related suitability analysis, 

specific ranges of all environmental variables were examined with regard to feeding.  When 

overall spatial distribution was examined it was apparent that areas around Caminada Pass 

showed proportionately higher foraging activity.  Seasonal and minimum group size distribution 

patterns were not tested due to variable weather conditions.   

An important approach to mark-recapture methods in wildlife research is the Jolly-Seber 

open-population model (Jolly 1965, Seber 1965, Seber 1982).  There have been embellishments 

and additions to the original model; however, the specific ideas and concepts presented have 

proven to be long lasting and valuable to the field of population estimation theory.  I examined 

the validity of the five Jolly-Seber assumptions with regard to cetacean photo-identification data 

(Chapter III).  The most obvious and recurrent factor was the premise that all samples and 

surveys are a representative subset of the entire population.  Additional requirements include 

being aware of the temporal and geographic range of the species and adhering to randomness 

stipulations.  Larger scale random survey design also needs to be complemented by smaller scale 

survey considerations.  For example, image acquisition should be non-preferential, and factors 

that may alter an individual’s probability of detection (i.e., group size, behavior or social status) 

must be taken into account.  Natural markings used for individual identification should be 

reliable and recognizable.  Finally, population parameter estimates need to be correctly 
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associated with an appropriate date or time period so that the population can be accurately 

defined.   

For bottlenose dolphins nicks and notches evident on the dorsal fin are suitable markings 

for photo-identification (Wursig and Wursig 1977) and were used in this study of Barataria Basin 

bottlenose dolphins (Chapter IV) to identify and document the behavior and movements of 

individual animals.  The study population appeared to be relatively closed based on a discovery 

curve that approached zero (Williams et al. 1993).  This curve suggested that only a few 

previously unsighted marked individuals were being captured as survey effort increased.  

Individual sighting histories were then used to estimate population size with Otis et al. (1978) 

closed-population unequal-catchability models.  The probability of sighting a given individual 

varied on both a temporal scale as well as by individual.  Population estimates for variously 

configured models produced fairly similar population estimates (138 - 238) with an associated 

95% confidence limit range of 128 - 297. 

Analysis of any population needs to incorporate the specific context of the individual 

under study.  In marine mammal studies the context refers to the environment and ecosystem that 

the individual or group inhabits (Chapter II).  The limitations and requirements for any statistical 

analysis need to be correctly understood to allow appropriate inferences to be made.  

Examination of the Jolly-Seber model with regard to cetacean photo-identification data gave an 

objective and thorough analysis of mark-recapture assumptions for a common marine mammal 

research strategy (Chapter III).  Analysis of individual sighting histories with respect to sources 

of variability and knowledge of field methodology allowed the estimation of both defensible and 

biologically realistic population estimates for bottlenose dolphins present in the Barataria Basin 

(Chapter IV).  Considering environmental variables that directly effect observed patterns of 
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distribution and behavior can only enhance understanding of cetacean populations.  In addition, 

ensuring that analyses are objective and relevant gives greater credibility and importance to 

associated findings.       
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CHAPTER II 
 

ENVIRONMENTAL HABITAT USAGE PATTERNS OF BOTTLENOSE DOLPHINS, 
Tursiops truncatus, IN LOWER BARATARIA AND CAMINADA BAYS, LOUISIANA 

 
INTRODUCTION  
 

The heterogeneous oceanic environment makes the characterization of habitat for any 

marine mammal species a challenging task.  Marine mammals are highly mobile, often variable 

in their spatial and temporal distribution patterns, and interact with their immediate physical, 

chemical and biotic environment in ways that are difficult to directly observe and quantify.  It is 

unclear at what resolution temporal and spatial oceanic attributes need to be examined to 

determine their relationship to marine mammal distribution patterns.  However, definition and 

understanding of how cetaceans interact with and rely on their immediate environments allows 

the possibility for insightful and informed conservation and management of individual 

populations and species.    

The Louisiana coastal environment has undergone significant changes in the last half 

century due to factors such as continued leveeing of the Mississippi and Atchafalaya rivers, 

eustatic sea level rise (Day et al. 1995), canal dredging (Turner 1997), and both natural and 

anthropogenic subsidence.  Coastal wetland losses from 1955 to 1978 are estimated to be as high 

as 12,700 ha per annum (Baumann and Turner 1990).  Estuarine areas are known to provide 

important habitat to juvenile fishes and crustaceans (Baltz et al. 1998) and have high primary 

productivity rates (Day et al. 1989, Garrison 1999).  Repercussions of wetland loss and 

ecosystem alterations on coastal Louisiana bottlenose dolphin (Tursiops truncatus) populations 

are unknown.  Inshore and offshore bottlenose dolphin populations in Louisiana waters are 

believed to be distinctive stocks (Waring et al. 2002). This assertion is based on the detection of 

hematological differences between coastal and offshore Tursiops individuals (Duffield et al. 
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1983, Duffield and Wells 1986), and the assumption that movement between relatively dissimilar 

marine ecosystems is limited.  Six inshore coastal bottlenose dolphin stocks are recognized in 

Louisiana waters (Waring et al. 2002).  However, population estimates from almost a decade ago 

(Blaylock and Hoggard 1994) were reported only for the Bay Boudreau/Mississippi Sound 

region (n = 1401), Terrebonne/Timbalier Bay complex (n = 100), and Barataria Bay (n = 219).  

Other research into the coastal bottlenose dolphin populations in Louisiana has been infrequent 

and irregular.  The paucity of recent research leaves doubt as to how well these dated abundance 

trends and distributional limits relate to the present day population size, habitat requirements, 

and spatial and temporal movement patterns within the region.   

Environmental conditions at spawning and nursery sites of coastal Louisiana fish species 

have been investigated using a fine-scale microhabitat approach (Saucier and Baltz 1993, Baltz 

et al. 1998).  A microhabitat is a three-dimensional description of physical and chemical 

conditions at an occupied site.  Obviously these attributes are transitory, yet collection of a large 

number of intensive microhabitat observations allows the environmental fluctuation, range and 

selection of the focal species to be characterized.  From this point it is possible to initiate how an 

ecosystem’s qualities connect and interact with the record of activities and abundance trends of a 

population.   

The objective of this study was to investigate whether the distribution patterns, behavior 

or observed group sizes of bottlenose dolphins present in a coastal Louisiana bay system could 

be characterized by a suite of selected fine-scale environmental and temporal variables including 

temperature, dissolved oxygen, salinity, turbidity, distance from shore, depth, hour of the day, 

month, and year.   
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METHODS 

Site Description 

Barataria and Caminada bays represent the seaward interface of the Barataria Basin with 

the Gulf of Mexico (Figure 2.1).  Approximately 145,000 ha of salt marsh are contained within 

the roughly 110 km long and 50 km wide basin (Conner and Day 1987).  This relatively large 

estuarine system is near to the activities of several commercially important fisheries (e.g., Gulf 

menhaden purse seine, inshore shrimp trawl, and blue crab pot) and contains one of the largest 

populations of bottlenose dolphins in coastal Louisiana (Waring et al. 2002).  The Barataria 

Basin is located along the humid, subtropical Louisiana coast directly west of the Mississippi 

River (Conner and Day 1987).  The climatic region is characterized by hot, humid summers with 

relatively mild winters.   Barataria and Caminada bays lie in the lower saline portion of the basin 

and are separated from the Gulf of Mexico by a series of barrier islands (Reed 1995).  The bays 

average 1.6 m of precipitation per year, and salinity typically ranges between 6 and 22 practical 

salinity units (psu).  Bay waters are both shallow (mean depth is 1.5 m) and turbid, with the 

diurnal tide range averaging around 30 cm (Connor and Day 1987).  Bottom sediments are 

composed primarily of silt, clay and organic detritus, but sand, shell and shell fragments are also 

present.  Common marsh vegetation types in this region include Spartina alterniflora (smooth  

cord grass), Juncus roemerianus (black rush), Distichilis spicata (saltgrass), Batis maritima 

(saltwort), and Salicornia virginica (glasswort) (Day et al. 1989). 

Survey Methodology 

Monthly surveys began in June 1999 and continued until May 2002.  General physical 

and geographical characteristics, such as connectivity to the Gulf of Mexico and proximity to 

industrial areas, were used to divide the study area into six strata.  Random sequence and order  
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Figure 2.1.  Study site location in lower Barataria and Caminada Bays, Louisiana. 
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of entrance into each of these strata created a stratified random sampling design.  Two or more 

independent observers used a small motorboat during each month to survey all six strata.  Once 

an individual or group was sighted, the boat was slowed and the individual or group was 

approached.  The latitude and longitude of the initial observation site was marked with a hand-

held geographic positioning system (GPS).  Standard photo-identification techniques (Wursig 

and Wursig 1977) were used to photograph as many dorsal fin profiles as possible to be used in a 

complementary photo-identification population assessment of bottlenose dolphins in the area.  

This technique allows identification of individual dolphins by documenting natural markings 

present on the dorsal fin (see Chapters III and IV).  After voluntary departure from the initial 

observation site, the boat was moved to the site to collect microhabitat data.  The ultimate 

microhabitat of an individual is the site it occupies at a given point in time (Hurlbert 1981).  

Direct measurements made at observation sites were conducted to describe trends in microhabitat 

selection of individuals and groups of bottlenose dolphins.  Environmental variables used to 

characterize microhabitat were water temperature, dissolved oxygen, salinity, turbidity, distance 

to shore and water depth.  Additionally, temporal variables including time of day, month, season 

and year were considered in this study.  Sea-surface temperature (°C), salinity (psu) and 

dissolved oxygen (mg/L) were measured with a Hydrolab Environmental Data Systems model 

SCR2-SU Sonde unit or the combination of a YSI model 33 S-C-T meter and a YSI model 57 

oxygen meter.  Water depth was determined with a weighted line marked at 10 cm intervals.  A 

superficial substrate sample from the bay floor was obtained from a small scoop attached to a 4 

m push-pole.  When depths exceeded the line or push-pole length, nautical charts were 

referenced for depth and substrate type.  Distance from shore was estimated by measuring the 

distance between the initial observation site and the nearest land point from detailed maps of the 



www.manaraa.com

 15

area.  Water samples were collected for laboratory assessment of Nephloid Turbidity Units 

(NTU) using a Moniteck nephelometer or Hach 2100N Turbidimeter.  Bottlenose dolphin group 

size and composition was recorded, including estimates of minimum, best, and maximum group 

size (Urian and Wells 1996) and the presence of juveniles and calves were noted.  An individual 

was identified as juvenile if it was less than 80% of adult size.  Individuals identified as calves 

exhibited two or more of the following, approximately 50% of adult size, dark coloration, limp 

dorsal fin, calf “head-out” surfacing pattern, neonatal vertical stripes, and consistently surfacing 

in “calf position” (Urian and Wells 1996).  Behaviors were categorized using the following 

descriptors (Urian and Wells 1996, Allen and Read 2000):  (1) Foraging – Fish in mouth, rapid 

and deep diving, quick circling behavior at the water surface, or direct pursuit of a prey item, (2) 

Social – Play, sexual encounters, leaping, tail-chuffing, and all other general interactive 

activities, (3) Rest – Slow bobbing and lack of relative motion, and (4) Travel – Directed 

movement, zig-zag swimming and milling.  All sightings were made during daylight hours (0750 

– 1850 hrs).  Sighting conditions were characterized by recording Beaufort sea state, sea state, 

general weather conditions (such as sun, clouds or rain) and presence of glare.  After all details 

were recorded, effort was continued at or near the point on the survey line from where the 

individual or group was initially sighted.   

Statistical Methods 

Monthly observations were pooled into seasons defined as Fall – (September, October 

and November), Winter (December, January and February), Spring – (March, April and May), 

and Summer – (June, July and August).  Statistical analyses were conducted using SAS software 

Version 8.02 (SAS Institute 1996) unless otherwise noted.  Environmental variables were 

assessed for univariate and bivariate normality.  Power transformations were invoked to improve 
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normality where necessary (Freund and Wilson 1997).  Seasonal differences between the 

environmental variables, including temperature, dissolved oxygen, salinity, turbidity, distance 

from shore and depth, were assessed using a multivariate analysis of variance (MANOVA).  

Pairwise comparisons were performed on variables that produced a significant Shapiro-Wilks 

result (p value < 0.05).  Least-square means methods with Tukey’s adjustment were used to 

indicate the character of significant seasonal differences.  Overall and seasonal means and 

standard errors of each environmental variable were also computed.  To establish whether 

sighting conditions differed between seasons, Beaufort Sea state values were assessed in an 

identical manner to the environmental variables.   

A principal components analysis (PCA) of six environmental variables (temperature, 

dissolved oxygen, salinity, turbidity, distance from shore, and depth) was employed to examine 

the pattern of variability in habitat use by bottlenose dolphins.  Only principal components with 

eigen values greater than one were chosen for further analysis as they accounted for more 

variation than an original variable.  Inspection of the scree plot was used to confirm that the 

selected eigen values described a relatively large proportion of total data variability.  To aid in 

interpretation a varimax rotation was used on selected orthogonal components.   

Foraging observations were compared to all other observations to determine whether 

environmental conditions where feeding occurred were distinct.  All behaviors associated with 

foraging, including direct contact, rapid and deep diving, quick circling behavior at the water’s 

surface, and direct pursuit of a prey item, were scored as feeding activity.  Non-feeding 

behaviors included social interactions, rest and travel.  In cases where prominent behavior was 

indeterminable, activity was conservatively categorized as non-feeding.  A logistic regression 

and habitat suitability curves (Saucier and Baltz 1993) were developed to investigate whether 
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particular environmental variables were useful in describing feeding activity.  A logistic 

regression uses maximum likelihood estimation to select variables that are most likely to predict 

the observed results.  Residuals follow a binomial distribution so neither homoscedasticity nor 

normality of individual variables are required; however, multicollinearity between independent 

variables should be minimal (Allison 1991) and was assessed by variance inflation factors (VIF).  

Variables that are primarily independent should produce VIF values close to 1, with no 

individual value greater than 10.  Specific independent variables investigated were temperature, 

dissolved oxygen, salinity, turbidity, distance from shore, depth, time of day, season and 

minimum number of individuals present in a group.  Variables included in the logistic regression 

were considered one at a time using a forward stepwise approach.  Entry and exit p-values of 0.2 

were chosen to identify a suite of variables that may be important even if not significant.  The 

variable with the greatest Chi-square score (also with an associated p-value ≤ 0.2) is the one that 

most reduces the log likelihood of the overall model.  The next variable is chosen in the same 

manner; however, after each addition all variables in the model were examined via a Wald Chi-

square test to ensure that they remained significant (i.e., Pr > Chi-square is less than or equal to 

0.2).  If the variable was no longer significant, it was eliminated from the model.  The goodness-

of-fit of the final model was evaluated via a Hosmer and Lemeshow test (Allison 1991) in which 

a non-significant Chi-square value indicates a good fit.  Least-square means with associated 

standard deviations of feeding and non-feeding observations were computed for all significant 

variables.  To describe seasonal feeding activity, seasons in which the highest proportion of 

feeding and non-feeding observations took place were calculated.    

Habitat suitability curves were constructed to characterize habitat selection at feeding 

sites (Baltz 1990).  This approach considers the proportional frequency of feeding activity across 
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individual environmental gradients in relation to the proportional availability of an 

environmental variable at intervals along its observed range.  Both the entire data set (i.e., 

resource availability) as well as the subset of observations where feeding occurred (i.e., resource 

use) were used to construct univariate frequency distributions and suitability curves.  In addition, 

habitat selection for group size was assessed also.  Specifically, feeding habitat suitability (S) for 

each defined interval of a given variable’s range was calculated using the following formula:   

S = P (E|F) / P (E) 

where P(E|F) is the probability of a feeding observation, and P(E) is the total number of 

observations (Baltz 1990).  Habitat suitability values were normalized to a scale of 0 (non-

feeding) to 1 (high probability of feeding) by dividing through by the highest calculated raw 

suitability value for the given environmental variable.  In addition, each of the univariate 

frequency distributions of the temporal and environmental variables was examined on an 

individual basis.  

 A Geographic Information System (GIS) was created to visualize the spatial distribution 

patterns of individual bottlenose dolphin sightings within the study area.  Maps were prepared 

with ArcGIS 3.2 software (Breslin et al. 1999, Longley et al. 2001, Ormsby et al. 2001).  Season, 

behavior and minimum group size were differentiated on projections of the study area to 

examine patterns of distribution.  To examine areas of proportionally higher feeding activity the 

entire study area was divided into 16 equally sized quadrats for which the overall number of 

observations as well as the frequency of feeding activity was tabulated.  Additional analyses on 

minimum group size and season were not undertaken due to variability in the ability to detect 

individuals between seasons, as well as the higher probability of seeing larger group sizes. 

Anomalous behavior of an oxygen probe required division of the data set.  All multivariate 
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statistical methods used the subset of observations where the Hydrolab Environmental Data 

Systems model SCR2-SU Sonde unit was used to measure dissolved oxygen content.  This 

subset constituted the first 194 observations taken (June 1999 – May 2001).  Univariate analyses 

on all other environmental variables used the entire dataset (n = 269).   

RESULTS 

On 44 survey days between June 1999 and May 2002, a total of 269 bottlenose dolphin 

individuals or groups were observed in the lower reaches of Caminada and Barataria bays.  

Number of groups, total number of individuals, incidence of feeding, and survey effort were 

tabulated on a seasonal basis (Table 2.1).  Observations and survey effort were distributed  

relatively evenly across seasons.  A MANOVA detected significant seasonal differences in 

temperature, dissolved oxygen, salinity and turbidity.  Posterior pairwise comparisons using 

least-square means with a Tukey adjustment indicated seasonal differences for 4 of 6 

environmental variables (Table 2.2).  No seasonal differences in distance from shore or water 

depth were detected so these variables were not examined further.  Temperature was 

significantly different between all four seasons.  Lowest temperatures were measured in winter, 

and then progressively increased through spring, fall and lastly summer.  The lowest dissolved 

oxygen levels were found at similar levels in summer and fall.  Dissolved oxygen content 

climbed significantly in fall and again in winter.  Mean salinity values fell into two general 

groupings: fall-winter salinities were higher than summer-spring.  These groupings are not 

readily visible because listed results do not show that the p-value for differences between spring 

and fall was 0.028.  Fall turbidity levels were significantly lower than winter and spring; 

however, differences in turbidity were not evident between summer, spring and winter.  Beaufort  

sea state values were significantly different between seasons (p < 0.0002).  Summer sea state was 
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Table 2.1.  Seasonal frequency of groups, effort (hours), number of individuals seen and 
proportion of observations where feeding was observed for bottlenose dolphin groups in lower 
Caminada and Barataria bays, Louisiana.   
 

 

 Winter Spring Summer Fall Total 

No. of observations 68 60 71 70 269 

Min. no. of individuals  327 422 595 550 1894 

Survey effort (hours) 46.5 54 53.5 53 207 

Feeding observations 18 24 21 25 88 
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Table 2.2.  Annual and seasonal patterns of environmental conditions measured in Barataria and Caminada bays, Louisiana.  
Significant seasonal differences (p < 0.025) were identified using least-square means (+ 1 SE) and are indicated by different letters 
across each row.  Seasonal ranges are reported below the mean for each variable.      
 

Variable  Winter Spring Summer Fall Overall mean (+ 1 SE) 

Temperature (°C) 

 

13.96 + 0.45 A 

(10.89 - 18.00) 

23.00 + 0.47 B 

(19.55 - 30.40) 

30.12 + 0.44 C 

(29.53 - 33.90) 

25.99 + 0.44 D 

(17.52 - 30.33) 

23.37 + 0.43 

Dissolved Oxygen (mg/L) 

 

11.58 + 0.28 A 

(8.38 - 16.63) 

9.07 + 0.27 B 

(4.79 - 14.55) 

6.99 + 0.30 C 

(3.67 - 11.10) 

7.90 + 0.29 C 

(5.70 - 10.55) 

8.98 + 0.19 

Salinity (psu) 

 

24.15 + 0.51 A 

(19.6 - 31.5) 

21.99 + 0.54 B 

(12.60 - 28.6) 

20.84 + 0.50 B 

(11.7 - 28.5) 

24.06 + 0.50 A 

(23.0 - 28.3) 

22.77 + 0.27 

Turbidity (NTU) 

 

14.15 + 0.87 A 

(4.1 - 34.0) 

13.50 + 0.92 A 

(1.56 - 28.1) 

11.19 + 0.85 AB 

(4.40 - 27) 

9.76 + 0.85 B 

(1.4 - 29.00) 

12.08 + 0.45 

Distance (m) 

 

69.04 + 12.78  

(10 - 300) 

111.42 + 13.61  

(5 - 500) 

91.73 + 12.51  

(3 - 600) 

70.14 + 12.60  

(10 - 800) 

84.77 + 6.47 

Depth (m) 

 

2.82 + 0.23  

(0.40 - 12.5) 

2.54 + 0.25  

(0.45 - 7.0) 

2.33 + 0.23  

(0.46 - 8.0) 

2.72 + 0.23  

(0.60 - 9.50) 

2.60 + 0.12 
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found to be significantly lower than both winter and fall.  In addition to summer, winter sea state 

was close to being significantly greater than those observed in spring surveys (p < 0.03).   

The PCA resolved the six environmental variables into three orthogonal factors that 

explained 71 % of the variability of the data set (Table 2.3).  The first three components had 

eigen values greater than one.  Each of the six environmental variables loaded heavily on at least 

one factor.  Factor 1 accounted for 30 % of the variability.  Heavy loadings were apparent for 

temperature and dissolved oxygen yet signs were opposite and reflect the seasonal patterns of 

temperature and dissolved oxygen evident in the study area.  Factors 2 and 3 each accounted for 

an additional 20 % of the variability.  Factor 2 loaded strongly on both salinity and turbidity.   

Salinity decreases as distance from Gulf waters increases, which in this case represents 

progressively more northern areas.  However, there is also semi-annual variability in salinity 

values.  Higher turbidity rates occur in water close to the shore and in more frequently or 

recently disturbed waters.  Strong positive loadings for distance from shore and depth were 

evident in Factor 3.  Distance from shore was greatest in open waters areas north of Grande Isle 

and Grande Terre where wetland areas were absent.  Though depth was relatively homogenous 

throughout the study area, channels and passes were deeper.  Distance from shore and water 

depth described a spatial three-dimensional component of the coastal landscape.   

Foraging behavior was evident in 88 of the 269 sightings during this study.  A forward 

stepwise logistic regression selected four environmental variables to describe feeding sites in the 

following order:  minimum group size, turbidity, temperature, and season (Table 2.4).  

Multicollinearity was not a problem as evidenced by a mean VIF value of 1.74, with no 

individual VIF value exceeding 5.  None of the selected variables were later discarded as a result  

of the stepwise procedure.  The Hosmer and Lemeshow criterion found the selected model to be 
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Table 2.3.  Rotated factor loadings of environmental variables at bottlenose dolphins sighting 
locations in lower Barataria and Caminada bays, Louisiana.  Magnitude and signs of factor 
loadings indicate strength and direction of each variable’s influence on a factor.  The variance 
explained by each factors’s eigenvalue are expressed as absolute, proportional, and cumulative 
values.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Environmental Variable Principal Component 

 1 2 3 

Temperature -0.88  -0.36 -0.01 

Dissolved Oxygen 0.94                -0.16 -0.04 

Salinity 0.02         0.82         0.16 

Turbidity 0.06         0.67         -0.19 

Distance -0.23  -0.05 0.70 

Depth 0.21          0.01          0.81 

 

Variance explained 1.85 1.20 1.18 

Proportion 0.31 0.20 0.20 

Cumulative 0.31 0.51 0.71 
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Table 2.4.  A forward stepwise logistic regression characterizing variables important in 
describing bottlenose dolphin feeding locations in lower Barataria and Caminada bays, 
Louisiana.  Individual variables were both entered and kept in the model with a α-level of 0.20.  
Feeding and non-feeding least-square means ( + 1 SE) were calculated for significant continuous 
variables, while highest and lowest proportions of feeding activity were given for season. 
 

Order Effect Wald χ2 Pr > χ2 Feeding 

(Mean  + 1 SE) 

Non-feeding 

(Mean + 1 SE) 

3 Temperature 6.78 < 0.01 24.28 + 0.75 22.82 + 0.54

1 Min. group size 5.54  0.02 9.27 + 0.72 5.92 + 0.52

2 Turbidity 4.79 0.03 13.22 + 0.78 11.65 + 0.56

4 Season 2.30 0.13 Spring (39.3 %) Winter (73.5 %)
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a reasonable fit to the data (χ8
2 = 5.79, p = 0.67).  Minimum group size, turbidity and 

temperature were all higher in feeding versus non-feeding observations.  The incidence of 

feeding was highest in spring (39.3 %) and lowest in winter (26.5 %).   

Feeding habitat suitability curves indicated selection patterns for temperature, turbidity, 

distance from shore, depth and minimum group size.  Selected temperatures for feeding were 

between 20 and 24 °C (Figure 2.2).  Dissolved oxygen content selection peaked around 6 mg/L 

and declined as values increased (Figure 2.2).  Salinity selection results were somewhat 

ambiguous due to a small number of observations for the lowest interval of salinity values that 

acted to inflate the associated S value.  However, there was a small peak around 20 psu.  Feeding  

selection was pronounced for turbidity values between 20 and 28 NTU (Figure 2.2).  Though a 

majority of observations were made in waters less than 50 m from shore, a selection for waters 

between 200 and 500 m from shore was apparent (Figure 2.3).  Selection for feeding was highest 

in water depths between 4 – 6 m of water (Figure 2.3).  There was a steady climb in proportion 

of feeding observations as minimum group size increased (Figure 2.3).  There appeared to be no 

obvious pattern relating time of day with feeding activity.  Environmental variables that were 

identified as important descriptors of feeding activity in the logistic regression analysis (i.e., 

minimum group size, temperature, turbidity and season) showed selection for feeding activity in 

extreme values of the resource availability, rather than mid-range values.  For example, 

temperature and turbidity showed pronounced selection values for higher values (Figure 2.2) and 

as minimum group size increased so did relative feeding suitability (Figure 2.3).  However, depth 

(Figure 2.3) and dissolved oxygen (Figure 2.2) showed relatively strong suitability in mid-range 

values yet were not selected in the logistic regression analysis.        

  GIS maps of feeding versus non-feeding sites identified areas (Figure 2.4) where feeding 
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Figure 2.2.  Feeding suitability curves for temperature, dissolved oxygen, and turbidity.  Vertical 
bars indicate frequency of overall observations (black) and feeding activity (white) for each 
given interval.  Black lines indicate the relative suitability of variable values for feeding activity. 
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Figure 2.3.  Feeding suitability curves for distance, depth and minimum group size.  Vertical bars 
indicate frequency of overall observations (black) and feeding activity (white) for each given 
interval.  Black lines indicate the relative suitability of variable values for feeding activity. 
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Figure 2.4.  Spatial distribution of feeding and non-feeding locations of bottlenose dolphins in lower Barataria and Caminada bays, 
Louisiana. 
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activity was relatively high.  More than 50% of the observations in waters directly around the 

Caminada Pass area involved feeding activity.  The northeastern ends of both Grande Isle and 

Grande Terre had relatively high rates of feeding also, but only a small number of observations 

were made in these areas.  Projections of minimum group size estimates and seasonal 

distribution of sighting locations showed a general pattern of larger group sizes in the passes 

(Figure 2.5).  Distribution range in summer was more expansive, yet these findings are heavily 

confounded by weather conditions that prohibited surveys in some regions during colder months 

(Figure 2.6).    

DISCUSSION 

This study utilized a fine-scale approach to examine patterns in bottlenose dolphin 

distribution, habitat use and feeding activity.  Even though four of six measured environmental 

variables were significantly different on a seasonal basis bottlenose dolphins were present during 

all surveys conducted in the study area.  Overall variability in environmental conditions were 

driven by three sets of environmental variables (Table 2.3).  Relationships between temperature 

and dissolved oxygen, salinity and turbidity, and distance and depth represent variability on 

seasonal, spatial-seasonal and spatial, scales respectively.  Spatial distribution patterns within the 

Barataria Basin showed general aggregation and feeding activity in the channels and passes, as 

well as differences in the range of seasonal observations.  Feeding sites were differentiated from 

non-feeding sites by group size, temperature, turbidity and season in the logistic regression 

(Table 2.4).  Habitat selection analysis indicated that feeding was most common in waters 4 – 6 

m deep, 200 – 500 m from shore with salinity values of around 20 psu (Figures 2.2 and 2.3).       
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Figure 2.5.  Spatial distribution of bottlenose dolphin sightings by season in the lower Barataria bay system, Louisiana. 
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Figure 2.6.  Spatial distribution of minimum group sizes of bottlenose dolphin groups in Barataria and Caminada bays, Louisiana.
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Environmental Correlates with Marine Mammal Distribution 

Environmental variables showed significant seasonal differences for temperature, 

dissolved oxygen, salinity and turbidity (Table 2.2).  The inverse correlation between 

temperature and dissolved oxygen (Table 2.3) further indicated that seasonal differences play an 

important role in describing the distribution and behavior patterns of bottlenose dolphins in the 

Barataria basin.  In addition, a logistic regression analysis noted that both season and  

temperature were important in describing feeding locations (Table 2.4).  Numerous relationships 

between marine mammal distribution and seasonal trends have been detected.  Commonly, the 

driving force in these associations is temperature fluctuations.  Short-beaked common dolphins 

(Delphinus delphis) were found to move to inshore New Zealand waters during summer and 

spring (Neumann 2001).  The occurrence of pronounced inshore movement during La Niña 

emphasized the correlation between warmer waters and inshore spatial distribution.  In proximal 

waters, sea surface temperature was found to be a decisive factor in distribution limits of four 

species of Delphinidae (Gaskin, 1968).  Similarily, Au and Perryman (1985) reported that 

spotted (Stenella attenuata) and spinner dolphins (Stenella longirostris) were abundant in 

tropical surface waters of relatively stable temperatures whereas common and striped dolphins 

showed preference for more variable equatorial and subtropical waters.  However, these winter 

observations differed slightly from Reilly’s (1990) findings for the same region during summer 

months.  The two sub-groupings remained, though striped (Stenella coerulealba) and common 

(Delphinus delphis) dolphins became spatially separated in warmer months.  In some studies, 

density differences in abundance have been observed on a seasonal basis.  Tershy et al. (1990) 

found seasonal patterns to the presence of Fin (Balaenoptera physalus) and Bryde’s 

(Balaenoptera edeni) whales within the Gulf of California, Mexico.  The frequency of both 
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species was negatively correlated with temperature.  Hector’s dolphins (Cephalorhynchus 

hectori) showed seasonal offshore movement (Dawson and Slooten 1988) though smaller scale 

diurnal observations have been inconsistent (Stone 1995, Bejder and Dawson 2001).  In southern 

Texas there was a peak in winter abundance estimates of bottlenose dolphins (Shane 1980).  

However, no apparent relationship exists between season and the frequency distribution of births 

for the same species in the Gulf of Mexico (Urian et al. 1996).    

It is a common contention that environmental variables associated with feeding activities 

may be proxies for the abundance or availability of important prey species (Kenney and Winn  

1985, Selzer and Payne 1988).  Specifically, either the distribution pattern or the preferred 

habitat of common prey species may be the determining factor.  Salinity and turbidity were 

important in describing environmental variability in my study (Table 2.3) and also play 

important roles in distributing and providing refugia for bottlenose dolphin prey from most other 

predators.  The former is a major determinant of community structure in estuaries and the latter 

reduces detection from visual nekton predators.  The observed relationship between salinity and 

turbidity indicate the importance of both spatial and temporal components.  The importance of 

additional spatial variables (i.e., depth and distance from shore) may be due to benefits related to 

prey capture or congregation.  A logistic regression analysis (Table 2.4) determined that 

minimum group size, temperature, turibidity and season were all significant in describing feeding 

versus non-feeding locations.  In addition habitat suitability curves (Figures 2.2 and 2.3) were 

able to define ranges of each specific environmental variable where feeding activity appeared to 

be most likely.  These findings are unique in that most often a higher or lower scale of selection 

is presented.  Several other marine mammal research findings indicate that particular 

environmental variables may be important indicators of prey species’ distribution patterns.   
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One of the distinctions between the resident and transient killer whales (Orcinus orca) of 

the Pacific Northwest (Olesiuk et al. 1990, Hoezel 1993, Saulitis et al. 2000) is their primary 

prey choice of fish and marine mammals, respectively.  These two prey choices utilize different 

features of bottom topography, and consequently the distribution patterns of resident and 

transient killer whale pods parallel these features.  In Sarasota Bay, western Florida, Barros and 

Wells (1998) found that stomach contents of bottlenose dolphins suggest an expected correlation 

between prey habitat and dolphin foraging areas.  Group sizes of spotted, spinner and common 

dolphins in the eastern Pacific Ocean were observed to mirror the diurnal group size fluctuations 

of yellowfin tuna, one of their common prey items (Scott and Cattanach 1998).  Au and 

Perryman (1985) had documented, but not directly quantified, these associations over a decade 

earlier.  In an extension to this work, Au and Pitman (1986) found positive statistical 

relationships between bird flocks and spinner and spotted dolphin schools.  Pilchard movements 

up the eastern coast of South African coast have been accompanied by migration of common 

dolphins during winter months (Cockroft and Peddemors 1990).  Sperm whale (Physeter 

macrocephalus) frequency is significantly greater on the eastern boundary of a Gulf Stream 

warm-core ring off Georges Bank (Griffin 1999).  Entrainment of shelf waters within the warm-

core ring is believed to provide suitable habitat for common prey items of sperm whales.  Selzer 

and Payne (1988) found seasonal variation in sea surface temperatures and salinities for white-

sided and common dolphins, and hypothesized that the interactions of these factors with sea floor 

topography and associated upwelling may be responsible for aggregating prey.  In Belize, 

dolphins were most consistently observed at the interface between the open ocean and more 

protected sea-grass beds and mangrove shorelines of the Turneffe Atoll (Grigg and Markowitz 

1997).  This interface is often recognized as a highly productive region that may also act as a 
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nursery for juvenile fishes.  Interestingly, protected central lagoon sites and creek mouths were 

frequented least.  Quiescent waters may not be conducive to prey capture, as tidal movement has 

been associated with feeding in several studies (Shane 1980, Gregory and Rowden 2001).  In the 

Gulf of California, Ballance (1992) found sighting rates and feeding activities of bottlenose 

dolphins to be significantly greater in areas less than 5.5 km from productive estuarine areas.  

Within the Sado Estuary, Portugal, Harzen (1998) noted that specific sub-areas of the estuary 

appeared to be used for certain activities.  Foraging was observed throughout the entire study 

area, although it was most prominent in areas close to openings from the estuary to open waters.  

Katona and Beard (1990) identified larger scale distinctions in feeding locations for humpback 

whale populations of the North Atlantic.  Five specific feeding locations and one major winter 

breeding aggregation region were identified.  Feeding behavior has sometimes been correlated 

with increased group size (Shane et al. 1986).  Campbell et al. (2002) suggested that larger 

groups were more effective in searching for food and efficient in cooperative feeding strategy.  

The logistic regression performed in my study concurred with this assertion (Table 2.4).  Both 

Corkeron (1990) and (Grigg and Markowitz 1997) identified both food patchiness and inter-

specific interactions as important influences on Tursiops group size.  Alternatively, for the same 

species in Cardigan Bay, West Wales, group size was unrelated to foraging activity (Gregory and 

Rowden 2001).   

However, not all cetacean feeding behavior is predictable.  Hoezel et al. (1989) found that 

individual minke (Balaenoptera acutorostrata) whales adopted specialized foraging strategies in 

similar oceanographic regimes.  Individual foraging techniques were believed to be a product of 

learned behaviors.  Bottlenose dolphins are both flexible and opportunistic in their feeding 

activity (Shane et al. 1986).  In Shark Bay, Western Australia, a small number of individuals 
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have been observed carrying sponges on their rostra as what is believed to be a foraging tool 

(Smolker et al. 1997).  Observations of feeding in association with shrimp boats have been 

documented in Texas waters (Leatherwood 1975, Brager 1993) and feeding on mud-banks by 

partial beaching has been observed in some salt-marsh areas (Hoese 1971).   

Innovative approaches to establishing habitat usage patterns, behavior budgets and 

movement patterns of marine mammals have been achieved by such methods as outfitting adult 

male seals with video cameras (Parrish et al. 2000), attaching satellite-monitored radio tags to 

large whales (Lagerquist et al. 2000), and using GIS to establish spatio-temporal prediction 

models (Hamazaki 2002).  Besides the limited time for data collection, video and satellite-tags 

require direct implementation and proximity to individuals that often results in small sample 

sizes.  Prediction models attempt to assess habitat suitability of areas where current survey data 

is not available.  However, the usefulness of these models is dependent on the quality, range and 

resolution of data available for analysis.  Recently Brager et al. (2003) was able to assess 

preferences of Hector’s dolphin by measuring sea-surface temperature, water depth and water 

clarity at both used and unused sites.  This study found significant relationships between all three 

variables both individually and when combined, though preferences varied by region and season.  

Measurements on additional environmental variables would undoubtedly provide added insight 

into the ecology of this species. 

Survey Design 

The seasonal pattern of spatial distribution in bottlenose dolphin sighting locations is 

strongly influenced by environmental conditions that may limit survey efforts.  DeMaster et al. 

(2001) found that Beaufort Sea state 1 conditions increased the probability of sighting beluga 

whales.  Therefore, observed seasonal differences in density may be due to inclement weather 
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conditions rather than movement of individuals out of a given area.  In this study, I found that 

Beaufort Sea state conditions were lower in summer and spring.  Due to the variability in 

seasonal weather conditions it was difficult to quantify differences in spatial patterns of feeding, 

seasonal observations and minimum group size (Figures 2.4, 2.5 and 2.6).  Forney et al. (1991) 

were able to address this issue by incorporating environmental conditions as a covariate into their 

modeling efforts of harbor porpoises.  Another issue when conducting survey work is the ability 

to detect groups with equal probability.  It is likely that a positive bias results from the higher 

probability of sighting larger groups exhibiting more acrobatic activities.  If there is 

inaccessibility of regions due to poor conditions that cause a non-representative sample of the 

environment or behavior to occur, the reported results may also be biased.     

Conservation 

Two bottlenose dolphin stocks meet at the interface of Barataria Bay and the Gulf of 

Mexico (Waring et al. 2002).  The distribution limits of the western Gulf of Mexico (wGOM) 

bottlenose dolphin stock extend from presumed bay boundaries to the 18.3 m isobath all the way 

from the Texas border to the Mississippi River mouth.  Approximately 3500 individuals are 

estimated to constitute the wGOM stock.  The Barataria Bay “community” (see Wells et al. 

1987, Waring et al. 2002) is believed to be about 219 individuals though recent work indicates 

that this may be an overestimate (C. Miller, Chapter IV).  Distinctions between these two stocks 

are based in part on the assumption that movements between stock regions are limited by 

dissimilar climates and oceanographic conditions.  In accordance with these assumed population 

boundaries and different marine environments the Barataria bay stock is managed separately 

from the wGOM under the Marine Mammal Protection Act.   
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CONCLUSIONS 

Though many researchers have investigated environmental correlates in relation to 

marine mammal distribution or activities, the assessment of a synchronous suite of 

environmental forcing factors of bottlenose dolphin populations has been limited.  Furthermore, 

the observed relationships between bottlenose dolphin distribution and behavior represent 

selection of environmental conditions, but should not be interpreted to indicate actual 

preferences (Baltz 1990).  In an effort to provide a representative sample I used a randomly 

stratified survey design.  The amount of effort I was able to devote to this project was limited by 

factors such as weather conditions, time constraints and size of the research vessel.  Regardless I 

feel that the observations made during this study constitute a satisfactory and meaningful dataset 

describing environmental usage patterns of bottlenose dolphins in the area.  A spatially and 

temporally explicit fine-scale characterization of the area would allow more definitive 

conclusions regarding bottlenose dolphin preference of environmental variables in this area.  In 

addition there are many more variables that could be included in a habitat characterization.  

These factors may include but are not limited to tidal stage, chlorophyll a concentration, 

movement of prey, presence of predators or competitors, water velocity and age composition of 

groups.  Despite these considerations, my findings with regard to habitat usage findings were 

able to effectively determine both the range and variance of important environmental variables 

and highlight strong variable selection for bottlenose dolphins in this region.  Though the exact 

reasons for observed habitat selection are elusive, the development and quantification of an 

environmental context for population activity, movement, behavior, and residency patterns is an 
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interesting step towards protecting individual populations and predicting future patterns of 

habitat use in the event of environmental change.   
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CHAPTER III 
 

ASSESSMENT OF JOLLY-SEBER ASSUMPTIONS FOR NATURALLY MARKED 
CETACEAN PHOTO-IDENTIFICATION DATA  

 
INTRODUCTION 
 

Field research on cetaceans is often hampered by highly mobile subjects, limited number 

of opportunities for visible contact, and heterogeneity of both oceanographic and climatic 

conditions.  In response to these difficulties, survey design and thorough analysis has sometimes 

been ignored in lieu of capitalizing on scant opportunities to directly observe study animals.  

Consequently, general and simplified models may be employed to estimate demographic 

parameters.  This may be necessary when assumptions of more complicated models cannot be 

assessed or met.  However, these circumstances may result in highly variable estimates with 

intractable bias. 

Photo-identification (photo-ID) techniques (Wursig and Wursig 1977, Olesiuk et al. 

1990, Wursig and Jefferson 1990, Wells 1991) are frequently used to estimate demographic 

parameters of marine mammals.  An appropriate photo-ID survey design is determined by a 

combination of factors including randomness requirements, weather conditions, behavior, and 

vessel restrictions.  Independent observers scan the water for individuals or groups once 

underway.  If sighted, the subjects are approached within a distance suitable for taking 

photographs given existing weather conditions.  Markings suitable for photo-ID are then 

photographed for as many individuals as possible.  Natural markings used in marine mammal 

studies include nicks and notches on the dorsal fins (Wursig and Wursig 1977, Wells 1991), 

saddle patch patterns (Baird and Stacey 1988, Olesiuk et al. 1990), pigmentation and markings 

on tail flukes (Whitehead and Waters 1990) and callosity patterns on the rostrum (Bannister 

1990, Payne et al. 1990).  These distinctive features are assumed to be sufficiently long lasting, 
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slow in changing and unique enough to be recognized in subsequent sightings.  Survey effort is 

resumed once photo-ID efforts are complete or individuals vacate the area.  After completion of 

fieldwork, clear and complete images of the natural markings are examined for photographic 

quality and relative distinctiveness.  Records are then analyzed to describe patterns on the 

appearance of new individuals, re-sighting frequencies, association patterns and distribution.  

Application of mark-recapture statistical theory and models can be used on individual-sighting 

histories to estimate population parameters.  Mark-recapture model selection is dependent on the 

population under study, the survey methodology employed, and several other associated 

limitations or restrictions.  Life history characteristics investigated have included population 

dynamics (Best and Underhill 1990, Calambokidis et al. 1990b, Karczmarski et al. 1999), social 

organization (Bigg et al. 1990, Whitehead 1990b), rates of survival (Buckland 1990) and 

reproduction (Barlow 1990), sex and age ratios (Glockner-Ferrari and Ferrari 1990), site fidelity 

(Wells and Scott 1990), movement patterns (Perkins et al. 1984, Calambokidis et al. 1990a) and 

mortality (Wells and Scott 1990). 

Many excellent reviews of the history, theory and development of mark-recapture 

techniques, variously termed mark-and-recapture, capture-recapture, tag-recapture or band-

recovery, have been published (Seber 1992, International Working Group for Disease 

Monitoring and Forecasting 1995, Schwarz and Seber 1999, Pollock 2000, Buckland et al. 2000).    

Specific to wildlife studies, important summaries of both closed- (Otis et al. 1978, Chao 2001) 

and open-population models (Pollock et al. 1990) have been prepared.  Additionally, useful 

books by Caughley (1977), Begon (1979) and Thompson et al. (1998) as well as two highly 

influential editions of George Seber’s “The Estimation of Animal Abundance and Related 

Parameters” (1973, 1982) are valuable contributors to the mark-recapture literature.   
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The starting point for mark-recapture methodology is commonly attributed to the 

Lincoln-Petersen (L-P) estimator (Petersen 1896, Lincoln 1930).  The L-P estimator assumes 

there are no additions or deletions throughout the study duration, each individual has an equal 

probability of being captured, and identifying marks are correctly documented and permanent.  

For photo-ID studies, the terms capture and recapture can be used interchangeably with sighting 

and re-sighting, respectively.  The validity of the assumption of equal capture of individuals was 

questioned and examined in an important monograph by Otis et al. (1978).  Sources of variation 

in individual capture can be attributed to capture response, temporal factors and inherent 

individuality, that Otis et al. (1978) identified as possible sources of bias related to behavior, 

time and heterogeneity, respectively.  Behavior refers to a directional change in probability of 

sighting after initial capture (i.e., either increased or decreased).  Time accounts for temporally 

dependent variables such as survey conditions, season and time of day.  Heterogeneity suggests 

that the uniqueness of any given individual will produce differences in probability of capture.  

All possible combinations of these three sources of variation have been proposed.  Models 

describing individual heterogeneity have been the most difficult to characterize, though some 

effectual solutions include jackknife estimators (Burnham and Overton 1978), mixture 

distributions (Norris and Pollock 1996, Pledger 2000), explanatory covariates (Huggins 1989, 

Alho 1990) and log-linear models (Cormack 1989).  Chao (2001) reviewed and summarized 

alternative solutions to the suite of Otis et al. (1978) models.  The Otis et al. (1978) approach 

was important for assessing closed population models, but populations that are geographically or 

demographically open do not meet assumptions and require a different methodology.    

In 1965, independent yet parallel descriptions of stochastic open-population model 

notation, assumptions and methodology were published by G. M. Jolly and G. A. F. Seber (Jolly 
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1965, Seber 1965).  More than two capture periods are required to estimate the size, survival or 

recruitment rates of a population that may fluctuate due to birth, death, emigration or migration.  

Marked individuals are linked to a specific survey date, though time between survey dates does 

not need to be constant.  Assumptions of the Jolly-Seber (J-S) model are that (1) every individual 

in the population has the same probability of being captured in any given sample, (2) every 

individual in the population has the same probability of survival, (3) the process of capture 

places similar risks and fates on all individuals, (4) marks are recognized and accurately 

identified on each sighting occasion, and (5) samples are instantaneous and all individuals are 

released immediately after capture.  Special cases of the J-S model include deaths only (Darroch 

1959, Jolly 1965, Seber 1982), births only (Darroch 1959, Jolly 1965, Seber 1982), constant 

survival and/or capture (Jolly 1982), age-dependent (Pollock 1981, Stokes 1984), cohort 

(Buckland 1982, Seber 1982), and temporary trap response (Robson 1969, Pollock 1975, 

Brownie and Robson 1983).  Lebreton et al. (1992) continued the ideas of Pollock et al.’s (1990) 

monograph by including strata such as sex, age, size and location.  Seber (1982) suggests that a 

minimum of ten re-sightings need to be seen on each capture occasion to avoid bias due to sparse 

data. 

Hammond (1986) initiated serious investigations into topics of mark-recapture analysis of 

marine mammal photo-ID surveys.  He stressed the need for proper implementation and 

understanding of modeling strategies.  This influential work resulted in the compilation of a 

Special Issue of the International Report of the Whaling Commission (Hammond et al. 1990) 

dedicated to matters relating to mark-recapture techniques for naturally marked marine 

mammals.  Individual contributions demonstrated the variety of applications and developments 

that were underway in marine mammal investigations and also acknowledged the necessity of 
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assessing the appropriateness of model assumptions.  The pivotal role of the J-S model in mark-

recapture theory for open-populations makes it a worthy candidate for investigating defensibility 

of assumptions in regard to marine mammal photo-ID surveys.  The objectives of this paper are 

to interpret J-S model assumptions in the context of cetacean photo-ID studies and understand 

the repercussions of possible violations of these assumptions.   

BASIC MODEL ASSUMPTIONS 

Each of the five J-S model assumptions were reviewed to discern the relevance of each 

assumption within the context of cetacean photo-ID research.  Crucial aspects for each 

assumption were delineated to highlight the complexity and fine-scale obstacles that may arise 

when determining the degree and direction of bias when a given assumption is violated.   

Specifically, questions in regard to the validity of each assumption were examined to determine 

whether it is a factor which may hamper the use of a traditional J-S model parameter estimate for 

a given study population (Table 3.1).      

(1) Every individual in the population has the same probability of being captured in any given 

sample 

For capture probabilities to be approximately equal, the sighting rate for each individual 

must be similar.  Detection of any given individual requires a number of particular events to be 

satisfied in sequence.  In photo-ID work the individual must be detected, the group or individual 

must be approached within a distance suitable for image capture given the prevailing conditions, 

and the identifying mark must be available for image capture.  A necessary step to ensure equal 

sighting rates is to randomize the survey protocol.  Although the initial capture of animals may 

be deliberate, subsequent recaptures (re-sightings) may not.  However, as most photo-ID 

research studies perform capture and recapture simultaneously, each survey must be random.  
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Table 3.1.  Questions arising from consideration of Jolly-Seber model assumptions in regard to cetacean photo-identification research 
 
 

Jolly-Seber Model Assumption Questions to consider 

(1) Every individual in the population has the 

same probability of being captured in any given 

sample 

Are there differences in the chance that any given individual will be detected?   

Can each individual be approached within an appropriate distance for a 

satisfactory image to be taken?  

(2) Every individual in the population has the 

same probability of survival 

How does age, maturity or gender affect survival? 

Is the behavior that is causing individuals to be naturally marked related to 

survival?  

(3) The process of capture places similar risks 

and fates on all individuals 

Does the process of capture disproportionately affect behavior or survival of 

individuals? 

(4) Marks are recognized and accurately 

identified on each sighting occasion 

Are marks permanent?  

Are marks significantly distinct to be consistently recognized? 

(5) Samples are instantaneous and all individuals 

are released immediately after capture 

What is the temporal interval over which samples are taken during a given 

survey? 
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The random survey design must also ensure that neither location nor time of day is confounded.  

Specifically, certain locations should not consistently be surveyed during similar times or in 

predictable sequence.  Another obvious, yet important consideration is that each population 

member must be within the limits of the study area during surveys.  If the population is 

demographically open, the geographic range of the population must be known.  The behavior and 

size of the group at the time of sighting may affect the ability of researchers to see individuals.  

For example, a large, acrobatic group is more easily visible than a few individuals quietly 

milling.  Particular behaviors may also be linked to such covariates as group size, time of day, 

oceanographic features (such as tidal ebb or flow) and weather conditions.  Although individuals 

may be detected during one or more surveys, they might not ever be captured.  Once an 

individual is visible, it may simply ignore the vessel or react in manner that reduces the 

probability of image capture.  If an individual consistently avoids researchers, it may never be 

captured.  Avoidance behavior may be due to a previous experience or wariness.  Alternatively, 

individuals may intentionally approach the research vessel.  Behavior may also be correlated 

with distinctiveness of natural markings.  For example, a positive response to boat traffic may 

also result in more frequent interactions and greater probability of acquiring natural markings as 

a result of interactions with vessels and gear.  Additionally the age and experience of a calf may 

directly affect its response to capture efforts.  Given detection and appropriate proximity, it is 

still not a certainty that an adequate image will be obtained.  Surfacing behavior must allow the 

naturally marked feature to be completely visible and presented at a satisfactory aspect for 

photography.  Covariates that are related to presentation, such as gender, age or size, may be 

another source of heterogeneity in capture probability.   
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(2) Every individual in the population has the same probability of survival. 

Survival estimates are calculated from marked individuals only.  Therefore survival rates 

for the entire population can be estimated only if survival rates for marked and unmarked 

individuals are similar.  However, if survey techniques are biased toward a particular gender or 

age group resulting survival estimates may not be extended to the population without bias.  

These skewed estimates may be a result of differential behavioral responses to surveys, unequal 

probability of capture or relative distinctiveness of natural markings (see Assumptions 1 and 4).  

Alternatively, survival estimates may be biased downwards if the capture process caused a 

decline in fitness (see Assumption 3).   

(3) The process of capture places similar risks and fates on all individuals 

It is generally important to consider whether a capture episode may cause harm to an 

individual by affecting behavior, health or social status.  However, the non-invasive methods of 

photo-ID do not pose serious risks to “captured” cetaceans.  However, the proximity of research 

vessels and plausible disruption to individuals’ activities requires consideration.  This is 

particularly true where researchers disrupt feeding, social, or reproductive activities.  Behavioral 

responses to the research vessel or changes in social affiliations as a result of photo-ID work may 

cause heterogeneity in capture.    

(4) Marks are recognized and accurately identified on each sighting occasion   

Natural marking used for identification must persist throughout the duration of the study, 

and must also be consistently recognizable on subsequent survey dates.  When an individual is 

incorrectly identified, the record of sighting histories obviously becomes inaccurate.  The 

frequency and trend in re-sightings is crucial in calculating demographic parameters and also 

making determinations as to whether the population is closed or open.  Population size estimates 
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will be biased if an individual is not consistently or accurately re-sighted during surveys.  For 

example, a distinctive mark that is only observable from one side reduces sighting probability by 

one half.   

 (5) Samples are instantaneous and all individuals are released immediately after capture  

This final assumption pertains to both total survey time as well as each individual 

observation.  Changes to a given population that occur while a single capture effort is being 

performed will confound parameter estimates.  If surveys are conducted over a relatively short 

period this should not be a problem.  However, over longer periods it may be unreasonable that 

there are no demographic changes to the population.  In photo-ID research individuals are 

immediately returned to the population.  Individual observation events are relatively brief in 

nature.  The underlying and general reason for Assumption 5 is to accurately define the study 

population.   

DISCUSSION 

  Close inspection of J-S assumptions in relation to photo-ID studies of naturally marked 

cetaceans gave rise to several important themes crucial to ensuring the valid application of 

models to cetacean populations.  The most obvious and recurrent factor was the premise that all 

samples and surveys are a representative subset of the entire population.  Requirements include 

being aware of the temporal and geographic range of the species and adhering to randomness 

requirements.  Larger scale random survey design also needs to be complemented by smaller 

scale survey considerations.  For example, image acquisition should be non-preferential, and 

factors that may alter an individual’s probability of detection (i.e., group size, behavior or social 

structure) must be taken into account.  Natural markings used for individual identification need 

to be reliable and recognizable.  Finally, population parameter estimates need to be correctly 
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associated with an appropriate date or time period so that the population can be accurately 

defined.     

Open versus Closed Populations 

An overwhelmingly crucial consideration in employing any type of mark-recapture 

model is the initial evaluation of whether the population is open or closed.  For representative 

samples of the entire population, the first step is knowledge of the temporal and geographical 

limits of the study population.  There is no definitive test to determine whether a population is 

open or closed, and so several researchers (e.g., Otis et al. 1978, Begon 1979) suggest that prior 

experience and knowledge are the best guides for this determination.  However, in a new 

initiative or research into a rare species this premise may be dependent on the very research 

about to be conducted.  A priori information often aids in assessing a general core area of usage 

by confirming consistent re-sightings of individuals within a survey region.  A closed population 

is assumed to have neither additions nor deletions within the temporal and spatial scale of the 

study.  This requires both biological (births and deaths) and geographical (immigration and 

emigration) closure (Thompson et al. 1998).  An open population allows movement into and out 

of the study area, as well as births and deaths.  Williams et al. (1993) analyzed the number of 

new individuals sighted with accumulating effort to gauge whether they were encountering new 

individuals or consistently seeing the same individuals (i.e., “Discovery Curve”).  A steady and 

asymptotic decrease in the number of new individuals discovered is often considered to represent 

a closed population.  Alternatively, a consistent increase in the number of sightings of marked 

individuals may indicate an open population.  In instances where the geographic range of the 

population is not adequately covered the terminal slope of the Discovery Curve may be 

misleading (Williams et al. 1993).  This problem is particularly pronounced if the portion of the 
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population failing to be surveyed is a specific, non-random group.  Implementation of an overall 

random survey scheme is only assured when the complete geographic range of a population have 

been assessed.  Therefore, determination of whether a population is open or closed is crucial for 

ensuring that:  individual probabilities of capture are similar (Assumption 1), survival rates can 

be approximately extended to unmarked individuals (Assumption 2), and that estimated 

demographic parameters apply to a well-defined study population (Assumption 5).   

Without a tremendously synchronous field effort it is rare that all samples for a given 

survey will be conducted simultaneously.  Often researchers violate J-S Assumption 5 as 

logistics and capabilities of a field project do not permit a sufficient level of effort.  Coordinated 

research efforts were able to produce a North Atlantic ocean-basin-wide population estimate for 

humpback whales (Smith et al. 1999).  This multi-year study used standardized sampling and 

analysis protocols over numerous study areas.  Hammond and Thompson (1991) were able to 

conduct a synchronous count of bottlenose dolphins present in Moray Firth, Scotland, though 

mark-recapture techniques were not involved.     

When the closure status of a population (i.e., open or closed) cannot be determined it may 

be more appropriate to use an alternative method of abundance assessment.  Indices denoting 

relative trends in abundance have been developed with varying degrees of success for several 

marine mammal species.  Seasonal aerial surveys of endangered Florida manatee at warm-water 

refugia were used as an index for total population size by application of a multiple regression 

analysis with temporal components (Garrott et al. 1994), and later critically re-assessed with 

independent life-history parameter estimates and non-linear modeling (Eberhardt et al. 1999).  

However, beach counts of Hawaiian monk seals were an unreliable index for population size 

(Eberhardt et al. 1999).  Udevitz (1999) developed a parametric model to account for temporal 
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variability in index counts of Pacific Walrus.  An alternative strategy to assessing abundance is 

quantification of cetacean occupancy patterns within a specified geographic region (Durban et al. 

2000).         

  A population may have periods of relative demographic stability punctuated by mortality, 

breeding, immigration or emigration events.  However, movement patterns of cetacean 

populations are flexible.  Emigration and immigration may occur with a fairly regular and 

predictable temporal pattern (e.g., Humpback whales winter migration to Hawaii) involving 

essentially all members of the population, though less predictable temporary emigration by only 

a subset of individuals occurs also (e.g., Bottlenose dolphin males and transients in the Gulf of 

Mexico).  If a population’s movement patterns are relatively synchronous as in the former case, 

it may be possible to conduct abundance estimates during times (and locations) of peak 

abundance when minimal fluctuations in population occur.  Less predictable temporary 

emigration by only a selection of individuals occurs also.  This second type of emigration has 

recently received some specialized attention (Pradel et al. 1997).  Disparate site-fidelity has been 

observed in some estuarine bays adjoining the Gulf of Mexico (Wells et al. 1987, Maze and 

Wursig 1999).  So-called “residents” are individuals whose home range is consistently within a 

bay region whereas “transients” exhibit more extensive ranging patterns and typically 

intermingle and breed with nearby populations.  Pollock et al. (1990) cited temporary emigration 

as a serious source of bias.  Likewise, Hammond (1990a) noted inconsistencies in blue whale 

population estimates that he primarily attributed to movement patterns.  Burnham (1993) has 

shown how to account for random emigration.  However, when emigration is permanent it is not 

distinguishable from mortality.  Whitehead (1990a) used a sperm whale example to demonstrate 

that likelihood-ratio tests could be used to distinguish re-immigration, emigration and mortality.  
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However, sample size limitations of this technique may be problematic.  Transients and residents 

were separated in models designed by Pradel et al. (1997).   These models assume resident 

individuals behave similarly and that movement out of a region by transients is relatively 

synchronous and for a known period of time.   

Group and Individual Features That Effect Representative Samples 

Even when geographic and temporal constraints of a given population are understood, the 

finer-scale details of a sample need to be considered further.  Differences in probability of 

capture may be a result of individual characteristics and group associations or the immediate 

environment.  Factors such as age, gender, group size and activity may influence detectability.  

The selection of only a sub-set of individuals for parameter estimates causes heterogeneity and 

bias in capture probabilities (Assumption 1) and difficulties in determining how demographic 

estimates can be extended to the entire population (Assumption 2).  Some studies (e.g., Wells 

and Scott 1990) have chosen to include only adults in population size estimates to lessen possible 

age-related bias.  Some models can assess age-related (Pollock 1981, Stokes 1984) or cohort-

specific survivorship (Seber 1982).  However, it is not always possible to age or sex individuals 

in the field.  The well-documented social structure of many cetacean species (Bigg et al. 1990, 

Weinrich 1991, Wells 1991) indicates that the probability of seeing one individual may be highly 

related to the observance of other individuals.  However, associations may be transitory (Connor 

and Smolker 1995) or related to behavior, for e.g. feeding (Smith et al. 1981, Fertl and Wursig 

1995, Rossbach 1999).  Consequently sightings and missed observations may be clustered 

(Cowan and Malec 1986).  It is possible that either entire groups or individuals within a group 

may be missed.  Wilson et al. (1999) notes that more precise estimates may be produced when 

non-independence of individuals in a population is taken into account.  Whitehead (2001) found 
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both evidence and lack of support for heterogeneity when investigating within-group probability 

of sightings for sperm whales.  Behavior of the entire group may also affect sightability.  Wade 

and Gerrodettte (1993) noted that dolphins exhibiting more “showy” behaviors could be seen 

from greater distances.  Consistency in the presentation of features bearing natural markings 

should also be considered.  For example, Perkins et al. (1985) noted differences in fluke 

presentation of discrete age classes.  Whitehead (2001) found that younger sperm whales had 

lower identification rates despite similar levels of natural markings.  Stern et al. (1990) 

investigated the efficiency with which individually identifiable minke whales could be 

photographed.  Surfacings were rated as “catchable” if both angle and distance from boat were 

appropriate for image acquisition.  Both the frequency and sequence of “catchable” surfacing 

was quantified.  Regions where minke whales were surveyed was found to be important in 

describing these relationships as when behavior was more readily predictable, photographs were 

attained more efficiently.   

Surveys are often conducted in regions where recreational and commercial boats are 

common.  Frequent interaction with boats and proximity to human activities may cause 

modifications to behavior (Assumption 1), increased risk of injury (Assumptions 2 and 3) and 

anthropogenic pollution (Assumptions 2 and 3).  A consistent response by all individuals to the 

initial capture process is the behavioral response defined and accounted for in the Otis et al. 

(1978) closed population models.  However, it is unlikely that all individuals will behave in a 

consistent manner.  Both positive and negative responses to vessels have been documented for 

various cetacean populations.  Lesage et al. (1999) found that the vocal behavior of belugas in 

the St. Lawrence River estuary are modified in response to ferries and small boats even though 

these vessels regularly traverse the area.  Collisions between large (> 80 m) ships traveling at 
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speeds greater than 14 knots is a serious (and often fatal) problem for large whales, including fin, 

right, humpback, sperm and gray whales (Laist et al. 2001).  In Sarasota, Florida the short-term 

effect of boat traffic on bottlenose dolphins (Nowacek et al. 2001) results in significant changes 

in swimming speed and direction, length of diving time and tightness of groups when a vessel 

approaches.  Tursiops spp. in New Zealand waters respond negatively to tour boats, though 

interestingly males and females have different avoidance strategies (Lusseau 2003).  Behavioral 

responses to whale-watching vessels of humpback whale pods with calves are distinct from pods 

without calves in Hervey Bay, Australia (Corkeron 1995).  Behavioral modification was evident 

for all pods when vessels are within 300 m, but pods with calves also demonstrated a significant 

increase in diving when vessels are close.  Killer whales in Johnstone Strait commonly increase 

swimming speed and sometimes vacate an area in the presence of boats (Kruse 1991).  In the 

Eastern tropical Pacific small dolphins actively avoid the path of boats (Au and Perryman 1982).  

Alternatively, small delphinids in the Gulf of Mexico often approach research vessels to bow-

ride (Wursig et al. 1998).  Likewise, bottlenose dolphins in West Wales respond positively to 

tourist boats (Gregory and Rowden 2001).  Aircraft presence may represent a more unusual 

occurrence in a study region.  When helicopter and fixed-wing aircraft traffic are relatively close 

(altitude less than 185 m and lateral distance less than 250 m) behavioral responses including 

breaching and immediate dives are elicited from bowhead and beluga whales (Patenaude et al. 

2002).  Kogia spp. and beaked whales modify their behavior (usually by diving) in the presence 

of aircrafts (Wursig et al. 1998).  In some cases, the effects due to the photo-ID capture process 

may not be immediately evident.  Presence of boats introduces additional pollution into the 

environment through various chemical discharges from the motor.  Sub-lethal stress strictly 

attributable to the research vessel is unlikely.  Furthermore, the disadvantages of living in areas 
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with boat traffic is most likely balanced to some extent by significant benefits such as abundance 

of prey and shelter.   

Natural Markings 

Wursig and Wursig (1977) recognized that nicks and notches present on the trailing edge 

of bottlenose dolphin dorsal fins are appropriate natural markers of individuals.  These features 

were stable and recognizable throughout their two-year study.  However, they noted that pigment 

spots and bite marks did not remain visible for this same duration.  This concurred with Lockyer 

and Morris’ (1990) assessment of the usefulness of certain wound types for re-identification 

purposes in the same species.  Superficial scratches, deeper scratches and minor wounds are 

likely to heal in less than two years and often considerably shorter.  The persistence of more 

serious wounds due to shark attacks and bullet-holes are longer lasting, yet again not always 

adequate markers.  Specific regions of damage are found to have a bearing on long-term 

marking.  Head, back, dorsal fin and tail flukes are more vulnerable to permanent damage.  The 

ventral surface of humpback whale flukes is the region where most distinctive patterns occur 

(Carlson, Mayo and Whitehead 1990).  However, the stability of patterns is not always 

consistent.  Darker flukes show the greatest amount of change.  The most dramatic pigmentation 

pattern changes occur during the first year of life, with generally very little change evident after 

the third year of life.  Blackmer et al. (2000) found that morphological features of humpback 

whales tended to be more stable than superficial scars, scratches and pigment patterns.  

Specifically, dorsal fin shape and edges, the trailing edge of the fluke and the raised bumps on 

the caudal peduncle are relatively persistent.  Additionally some evidence for persistence of 

markings was correlated with sexual maturity of males.  The presence and size of lip patches, as 

well as the occurrence and shape of rostral islands has been useful in identifying individual 
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Southern right whales (Bannister 1990).  Gowans and Whitehead (2001) examined a catalog of 

northern bottlenose whale (Hyperoodon ampullatus) photographs to detect features that may be 

relatively ephemeral and therefore inappropriate for mark-recapture studies.  Using this approach 

they found that only two-thirds of the northern bottlenose whale population has reliable natural 

markings.  A double-marking experiment using both natural markings and microsatellite genetic 

markers confirms the reliability of natural markings in humpback whale populations (Stevick et 

al. 2001).  This study also indicates that errors are more likely to be made in identifying a single 

individual as multiple individuals, rather than correctly confirming these photographs as positive 

re-sightings.  Individual characteristics of cetacean populations may also influence natural 

markings.  Older individuals have a longer period to accrue scars and other markings.  So 

regardless of whether they were randomly seen, they may be more likely to end up in a final 

catalog of unique individuals.  Likewise, the behavior of particular age classes or genders may 

influence their susceptibility to accruement of marks.  For example, younger bottlenose dolphins 

are more susceptible to predation by sharks (Mann and Barnett 1999).  An important point noted 

by Hammond (1986) is that evidence for stability and persistence of a natural marking in one 

individual does not always guarantee identical results for all other members of the population.   

The second part of Assumption 4 is that the mark is correctly identified.  For photo-ID 

studies photo-quality and relative distinctiveness of the natural markings becomes very 

important.  The quality of photograph must be satisfactory to identify a given individual with 

certainty from subsequent images.  However, it is important to distinguish quality of image from 

relative distinctiveness of the given fin, fluke or other marking pattern.  The inclusion of lower 

quality yet highly distinctive individuals would allow differential probabilities of capture based 

on mark type.  It is also necessary that the distinguishing features used for capture be adequately 
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conspicuous to be relatively easily recognized in subsequent photographs.  Friday et al. (2000) 

found inconsistent levels of agreement between several judges regarding photographic quality 

and distinctiveness of humpback whales flukes.  Similarly, some researchers (Gowans and 

Whitehead 2001, Stevick et al. 2001) note that the number of marks present on an individual was 

correlated with increased photographic quality.   

The efficiency of comparing individuals has greatly benefited from computer imaging 

and matching programs.  Many programs are species-specific and have been developed to assist 

in cataloguing as well as determining the relative similarity of two images.  These software 

packages improve consistency and objectivity in matching efforts.  As effort and scope of studies 

expand, the number of photographs and images being reviewed rapidly increases.  This is 

important in light of Carlson et al.’s (1990) observations that experience and length of analysis 

time contribute to increased matching success.  Mizroch et al. (1990) developed a program with 

a front-end data entry procedure to describe pigment pattern, notch shape, and marked regions of 

humpback whale flukes.  A matching algorithm based on fluke descriptions assesses the 

plausibility of a match between two individuals.  Images with highest levels of similarity are 

displayed together for visual inspection.  Whitehead (1990b) used the relative location and type 

of mark present along the trailing edge of sperm whale flukes to classify individuals.  This 

process has proved to be relatively efficient and reliable.  The dorsal fin ratio method (Defran et 

al. 1990) measures relative distance between significant nicks and notches to the tip of a 

bottlenose dolphin dorsal fin.  This standardized assessment method was developed into a 

computerized version, Finscan (Kreho et al. 1999).  A silhouetted outline of the dorsal fin is 

developed using an interactive drawing program.  From this profile the dorsal fin ratio is 

extracted and then used to compare individuals.  Dolphins with notches on the leading edge or 
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top of dorsal fin cannot be included in Finscan.  Finally, identically marked individuals may be 

improbable, yet remains a possibility.  Karczmarkski and Cockcroft (1998) suggest using as 

many nicks and notches as are available rather than just the two most prominent as per Defran et 

al.’s (1990) dorsal ratio method.  These more distinct fins contain more information and 

therefore the possibility for random duplication decreases.  Payne et al. (1983) calculated the 

possibility of identical Southern Right whale callosity patterns and found the likelihood to be 

acceptably small.  If identical natural marking patterns were present, the size of the population 

would be underestimated since similar individuals may be regarded as a single individual.   

Different Approaches and Alternative Solutions 

Pollock (1982) presents a hybrid approach to the traditionally disparate methods of 

categorizing given populations as either open or closed.  This so-called robust design recognizes 

that over an extended survey period of an open population, there are short durations when the 

population adheres to assumptions of closed population models.  Thus, less complicated closed-

population models can be used to assess capture heterogeneity over relatively short time spans.  

Estimates from these periods are then fed into open population models that can make more 

precise and accurate estimates of demographic processes including birth, death, immigration and 

emigration.  This approach successfully combines some of the advantages for using each type of 

population model.  Schwarz and Seber (1999) strongly recommend the implementation of this 

approach in wildlife study.   

Adaptive sampling has been suggested as a good strategy for improving the precision of 

spatially clumped data (Thompson and Seber 1996, Seber 1999).  By increasing sampling effort 

in areas where more individuals are present allows more non-zero samples to be recorded.  

However, when based on simple random starting points this adaptive sampling may inadequately 
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cover the study area.  Pollard and Buckland (1997) incorporated adaptive sampling into line-

transect survey methods.  When a specified level of density was exceeded, effort along the track-

line was increased by zig-zagging back and forth along the survey route.  If density then falls 

below the specified density criteria, effort on the regular track-line is resumed.  Palka and Pollard 

(1999) tested the efficiency of adaptive versus traditional line-transect sampling in shipboard 

surveys of harbor porpoises (Phocoena phocoena).  Adaptive sampling provides more precise 

estimates, which may produce lower density estimates than traditional line-transect sampling.  

Drummer (1999) discusses solutions to distribution of effort between intensive small area 

searches for cryptic animals as opposed to surveys covering larger areas but with lower detection 

rates of study animals.  Using the variance of the abundance estimator, he concludes that a larger 

area should be covered at the expense of lower probabilities of sighting.  However, these results 

assume that search intensity is linearly related to detectability.    

Population dynamics have been included in log-linear models developed by Cormack 

(1989).  These models are able to incorporate biological realism and can easily overcome the 

problems of negative birth and death rates sometimes encountered in the J-S model.  Model fit 

and estimators may be investigated by omitting any specific group of individuals exhibiting 

particular behaviors or sighting patterns.  Hammond (1990b) suggests the possibility of 

eliminating specific sighting histories from a dataset to improve J-S model fit for humpback 

whales in the Gulf of Maine.  This approach was designed to reduce heterogeneity and 

investigate the robustness of population estimates.  It was also noted that increased sample 

coverage might also act to alleviate both of these factors.   

Despite advancements and improvements in population estimation theory and 

methodology there are still many problems to be resolved.  Often these difficulties are dealt with 
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on a case-by-case basis, as they have not been resolved in a more general manner.  Heterogeneity 

of capture is a serious and complicating factor for population assessment.  Carothers (1973) 

suggested that the greatest bias would be introduced in situations where a relatively high level of 

heterogeneity in capture probabilities was present.  For closed population models many have 

built on the framework of the Otis et al. (1978) structure, yet problems still persist.  Identification 

and inclusion of covariates such as weather conditions or sampling effort may act to partially 

alleviate these difficulties (Forney et al. 1991, Schwarz and Arnason 1996).  In line-transect 

analyses, group size and weather conditions can be adjusted using regression methods (Buckland 

et al. 1993).  Under certain assumptions, the direction and degree of bias due to heterogeneity 

can be determined (Pledger and Efford 1998).  However, it remains an important avenue of 

research.  Schwarz and Seber (1999) also discuss the difficulty of accounting for unmarked 

individuals in parameter estimation (Assumption 2).  Likewise, changes in demographic 

parameters with age or maturity of individuals that cannot be directly aged in the field remains 

an obstacle.  Sparse data sets can also be problematic (Gilbert 1973).  Chao (1989) described a 

closed-population model that was able to account for poor data coverage, but the J-S model 

becomes unreliable in such situations (Seber 1982).  Finally, uncertainty in selection between 

competitive models (Burnham et al. 1995, Buckland et al. 2000) and estimation of appropriate 

confidence intervals (Manly 1984, Cormack 1992, Cormack 1993) for some methods of 

population estimation are topics needing further research.   

CONCLUSIONS 

For wildlife populations the purpose of capture-recapture models is typically to estimate 

demographic parameters such as survival, recruitment, emigration, immigration and abundance 

(Pollock 2000).  Mark-recapture methodology, bias and problems have been apparent to marine 
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mammal scientists for the last 15 years.  However, it is important that the bridge between 

analysis and research be clear and easily overcome.  Accurate and precise population size 

estimation enables confidence in management and conservation efforts for marine mammals.  

Basic questions of modeling processes must be critically validated.  Research efforts have to be 

matched with the temporal and spatial scales of the real system to maximize resources and utility 

(Baltensweiler and Fischlin 1987).  In mark-recapture analyses, a model must reflect the type 

(open or closed) of population that accurately and realistically represents capture probabilities of 

individuals in the population. Otis et al. (1978) suggest using the most general model structure 

possible for a given analysis.  General models may reduce bias, yet are relatively imprecise.  

Alternatively, more complex models may increase precision but introduce inaccuracy into 

parameter estimates.  However, what ultimately drives the applicability and utility of any 

population model is the quality and quantity of data used.     
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CHAPTER IV 
 

MARK-RECAPTURE POPULATION ESTIMATION OF BOTTLENOSE DOLPHINS 
(Tursiops truncatus) IN COASTAL LOUISIANA (1999 – 2002) 

 
INTRODUCTION 

 
Population size estimation is a crucial stepping-stone for investigation of related 

demographic parameters such as fecundity, mortality, emigration and immigration.  Furthermore, 

insight into population dynamics allows more complex ecological topics such as social structure, 

environmental usage patterns, or predator-prey theory to be examined.  However, there are 

several obstacles to producing accurate and precise baseline population estimates:  application of 

advances in animal abundance modeling theory, constraints of fieldwork unknown to 

statisticians, and ambiguous data analysis strategies.  Abundance estimates for marine mammal 

populations are often achieved by applying mark-recapture statistical theory to photo-

identification efforts (Cerchio 1998, Cerchio et al. 1998, Wilson et al. 1999).  Specifically, 

identifying and documenting the occurrence of marked individuals allows sighting histories to be 

developed.  Natural markings used in marine mammal studies include nicks and notches on the 

dorsal fins (Wursig and Wursig 1977, Wells 1991), saddle patch patterns (Baird and Stacey 

1988, Olesiuk et al. 1990), pigmentation and markings on tail flukes (Whitehead and Waters 

1990) and callosity patterns on the rostrum of southern right whales (Bannister 1990, Payne et al. 

1990).  Photographs of these natural markings are used to document and monitor individual 

animals.  Occasionally, non-natural marks such as freeze-branding and radio-tagging are used 

also (Scott et al. 1990, Wursig et al. 1991).  To ensure that the correct and appropriate mark-

recapture analyses are being implemented in marine mammal field surveys, it is important to 

critically review their application in this discipline.    
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Mark-Recapture 

The starting point for closed mark-recapture models is the Lincoln-Petersen estimator 

(Petersen 1896, Lincoln 1930).  This restrictive model assumes there are no additions or 

deletions to the population during the study, each individual has an equal probability of being 

captured, and that identifying marks are both correctly documented and permanent.  In this 

context, the terminology capture and recapture refer to sighting and re-sighting, respectively.  

The equal probability of capture assumption was questioned and examined in an important 

monograph by Otis et al. (1978).  Causes for unequal rates of catchability were identified as 

behavioral (b) reaction to the capture process, temporal (t) factors and inherent individuality (h).  

Reaction to the capture process (behavior) refers to a change in probability of sighting as a result 

of initial capture.  Temporal factors (time) imply that temporally dependent variables such as 

survey conditions, season and time of day should be taken into account.  Inherent individuality 

(heterogeneity) suggests that the uniqueness of each given subject will produce differences in 

probability of capture.  Most difficulty has been found in describing models inclusive of 

individual heterogeneity.  When a constant catchability model was included, a total of eight 

models can be described (i.e., constant (no variability), behavior, time, heterogeneity, behavior-

time, behavior-heterogeneity, time-heterogeneity and time-behavior-heterogeneity).  In a recent 

review Chao (2001) summarized alternative solutions and approaches to all eight models.    

Bottlenose Dolphin Abundance Estimates in Louisiana Waters  

The 2002 U. S. Atlantic and Gulf of Mexico marine mammal stock assessments (Waring 

et al. 2002) recognize six possible Gulf of Mexico bay, sound, and estuarine bottlenose dolphin 

(Tursiops truncatus) stocks in Louisiana waters.  However, population estimates were reported 

only for the Bay Boudreau/Mississippi Sound region (n = 1401), Terrebonne/Timbalier Bay 
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complex (n = 100), and Barataria Bay (n = 219).  These estimates were based on aerial line-

transect data collected in September and October of 1993 (Blaylock and Hoggard 1994).  Other 

research into the coastal bottlenose dolphin populations in Louisiana has been infrequent and 

irregular.  Aerial surveys of coastal regions in the Gulf of Mexico made inshore and offshore 

estimates during 1987 (Mullin 1988, Mullin et al. 1990).  Barataria, Timbalier and Terrebonne 

bays were included in inshore population size estimates of 500, 1232, and 2869 made in April, 

June and October, respectively.  These aerial abundance estimates were notably greater than 

previous studies (Fritts et al. 1983, Scott et al. 1989).  Jefferson (1996) conducted vessel-based 

surveys for bottlenose dolphins in offshore waters of the northwestern Gulf of Mexico in 1992 

and 1993.  From line-transect surveys, the estimate for Louisiana continental slope waters was 

451 individuals, whereas the estimate for continental shelf waters was 520 individuals.  In 1989 

and 1990 aerial surveys over similar regions (Gulf of Mexico waters directly south of Louisiana 

greater than 200 m) counted 463 bottlenose dolphins (Mullin et al. 1994).  All of these offshore 

studies covered large areas and have not been replicated on a regular basis.  Therefore, there is 

doubt as to how the abundance trends noted in these various research studies relate to the present 

day population size in this vicinity.  My research applies the closed-population unequal-

catchability models (Otis et al. 1978) to describe and assess the bottlenose dolphin abundance 

within two adjoining bays in the lower Barataria Basin of coastal Louisiana.     

METHODS 

Site Description 

Barataria and Caminada bays represent the seaward interface of the Barataria Basin with 

the Gulf of Mexico (Figure 4.1).  This relatively large estuarine system is proximal to the 

activities of several commercially important fisheries (e.g., Gulf menhaden purse seine, inshore 
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shrimp trawl, and blue crab pot) and contains one of the largest populations of bottlenose 

dolphins in coastal Louisiana (Waring et al. 2002).  The Barataria Basin is located along the 

humid, subtropical Louisiana coast directly west of the Mississippi River (Connor and Day 

1987).  The climatic region is characterized by hot, humid summers with relatively mild winters.   

Barataria and Caminada bays lie in the lower saline portion of the basin and are separated from 

the Gulf of Mexico by a series of barrier islands (Reed 1995).  Precipitation in the bays average 

1.6 m per year and salinity typically ranges between 6 and 22 practical salinity units (psu).  Bay 

waters are both shallow (mean depth is 1.5 m) and turbid, with the diurnal tidal-range range 

averaging around 30 cm (Connor and Day 1987).  Bottom sediments are composed primarily of 

silt, clay and organic detritus, but sand, shell and shell fragments are also present. 

Survey Methodology 

Surveys began in June 1999 and continued until May 2002 on approximately a monthly 

basis.  General physical and geographical characteristics such as connectivity to the Gulf of 

Mexico and proximity to industrial areas were used to divide the study area into six regions.  

Random sequence and order of entrance into each of these regions created a stratified random 

sampling design.  One or more independent observers accompanied myself aboard a 17-foot  

outboard motor boat during each survey.  Once an individual dolphin or group was sighted, the 

boat was slowed and the individual(s) were slowly approached.  The latitude and longitude of the 

initial sighting location was marked on a hand held Garman 45 GPS unit.  Standard photo- 

identification techniques (Wursig and Wursig 1977) were used to photograph as many dorsal fin 

profiles as possible.  To ensure that all animals within a given group had equal probability of 

being sighted, individuals were not preferentially photographed based on relative distinction of 

their fins.  Kodak 35 mm slide film was used in a Nikon N-70 camera with a 90-300 mm zoom 
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Figure 4.1.  Study site location in lower Barataria and Caminada Bays, Louisiana. 
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lens for all pictures.  Estimates of minimum, best, and maximum group size were made.  The 

presence of juveniles and calves were noted.  An individual was identified as juvenile if less than 

80% of adult size.  Individuals identified as calves exhibited one or more of the following: 

approximately 50% of adult size, dark coloration, limp dorsal fin, calf “head-out” surfacing 

pattern, neonatal vertical stripes, and consistently surfacing in “calf position” (Urian and Wells 

1996).  Behaviors were classified using the following descriptors (Urian and Wells 1996, Allen 

and Read 2000):  (1) Foraging – Fish in mouth, rapid and deep diving, quick circling behavior at 

the water surface, or direct pursuit of a prey item, (2) Social – Play, sexual encounters, leaping, 

tail-chuffing, and all other general interactive activities, (3) Rest – Slow bobbing and lack of 

relative motion, and (4) Travel – Directed movement, zig-zag swimming and milling.  Beaufort 

state, sea state, general weather conditions (such as sun, clouds or rain) and presence of glare 

were also noted.  After the individual or group voluntarily vacated the initial site of observation, 

I moved back to this site and collected environmental data, including salinity, temperature, 

dissolved oxygen, substrate type, turbidity, distance to shore, and water depth, to be used in a 

related environmental habitat usage study.     

Image Selection and Analysis 

Based on clarity and quality, slide images were graded as excellent, medium, or poor.  

For population assessment purposes, only excellent images were used.  All of the following 

elements were evident in excellent images:  (1) the dorsal fin was clearly visible and large 

enough to detect any irregularities present on either the leading or trailing edge of the fin, (2) the 

given individual was surfacing on approximately a normal plane to the projection of the camera 

lens, and (3) the fin was not obstructed by objects such as water droplets, sections of the boat, 

glare or other individuals.  From the selection of excellent quality images, fins with features of 
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sufficient distinction to be recognized in subsequent surveys were identified and cataloged.  To 

aid in comparison, fins were then categorized according to prominent fin features.  Matching of 

dorsal fins was performed by visual inspection (using a light table and magnifying monocle) and 

digital analysis using the fin matching software, Finscan (Kreho et al. 1999).  Finscan uses 

digitized images to compute dorsal fin ratios (Defran et al. 1990) and then presents groups of 

similar fins for initial comparison.  Every image in the catalog was checked manually to confirm 

final decisions of fin identification and matching.  Procedures implemented for treatment of 

images were put in place to avoid any introduction of bias through this aspect of the project.  The 

use of computer software as well as an independent manual calculation of the dorsal fin ratio 

provided objective measures for both identifying individuals as unique and assessing similarity 

between fins.  Furthermore, the use of only high quality images ensured mark recognition.  

Natural markings of fins in excellent quality slides were evaluated as to whether they could be 

easily recognized in subsequent pictures.  These measures avoided the occurrence of false 

positives (incorrect matching of two unique slides) and false negatives (incorrect identification of 

two slides that are in fact a single individual).   

Population Estimation 

The sighting history of each individual was determined on both monthly and seasonal 

scales.  Seasons were defined as: Fall - September, October and November, Winter - December, 

January and February, Spring - March, April and May, and, Summer - June, July and August.  

As levels of effort for eight consecutive seasons, Spring 2000 through Winter 2001/2002, were 

comparable, they were used exclusively for population modeling purposes.  A sighting history 

was developed for each individual by noting their presence or absence during each of eight time 

intervals.  Effort in hours was corrected for the time spent off-effort, i.e., while collecting 
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photographic and environmental data or transiting between survey blocks.  The number of new 

uniquely identified individuals was plotted against both corrected effort and total number of 

individuals seen at sea to produce discovery curves (Williams et al. 1993).  The terminal rate of 

discovery (Wilson et al. 1999) described by these graphs was used to assist in decisions 

regarding population closure.  Specifically, slopes that show asymptotic trends would suggest a 

relatively closed population.  The terminal slope of discovery was calculated using only the last 

10 % of the data to determine the ratio of previously unseen marked individuals to the 

cumulative number of individuals seen at sea.  Program CAPTURE (Otis et al. 1978, Rexstad 

and Burnham 1991) and Program MARK (White and Burnham 1999) were used for population 

modeling purposes.   

CAPTURE is specifically designed to test the eight closed-population unequal-

catchability models discussed in the monograph by Otis et al. (1978).  Models are identified by 

the parenthesizing the appropriate sources of variation  (i.e., none (o), behavior (b), time (t), and 

heterogeneity (h)).  The suite of eight Otis models can be listed as:  M(o), M(t), M(b), M(h), 

M(tb), M(bh), M(th), and M(tbh).  An overall model selection procedure was performed using a 

multivariate discriminant function to estimate fit on a scale of 0 (poor fit) to 1 (good fit).  Seven 

Chi-square goodness-of-fit tests are included in CAPTURE output to examine the relative fit of 

two given models (e.g., M(o) versus M(t) (test 3), and M(h) versus M(hb) (test 7)).  The four 

other models that did not include behavioral variation were explored separately in this analysis.  

The non-invasive photo-identification techniques used in this study were not likely to create a 

change in behavior as a result of  “capture.”  Response-to-capture alterations may also be 

attributed to the presence of researchers; however, our small research vessel was not an unusual 

occurrence in the region and dolphins did appear to be habituated to the presence of similar 
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vessels.  Therefore, realistic and more appropriate models that investigated time and individual 

heterogeneity were the primary focus.  CAPTURE also produces estimates based on similar 

algorithms developed by other authors that also evaluate some of the eight Otis models and give 

relatively similar results.  Specifically, alternative estimators for Model M(t) (Chao 1989), 

Model M(h) (Pollock and Otto 1983, Chao 1988), and  Model M(tb) (Burnham unpublished) are 

presented.       

MARK is an interactive modeling program that provides estimates of specific 

demographic parameters based on the sighting histories of marked animals.  Data from live 

animal recaptures, band or ring recoveries, known fate (e.g., radio-tracking) or a combination of 

these data types may be input into the various models offered by this program.   In this study I 

used the unequal-catchability closed-population models again based on the Otis et al. (1978) 

models.  MARK differs from CAPTURE in that the user is able to experiment with numerous 

configurations of temporal or behavioral variation.  For example, temporal variation can be 

adjusted to vary by each sighting occasion (the only setting in CAPTURE), by each year, by 

season or by any other relevant time scale.  To aid in model selection, both Aikaike’s 

Information Criterion corrected for small sample sizes (AICc) and deviance are computed.  AICc 

is a transformation of the maximized log-likelihood that has been adjusted for the relatively 

small ratio of estimated parameters to sample size (Aikaike 1973, Hurvick and Tsai 1989).  The 

goodness-of-fit of a given model is measured by deviance, which is the difference between the  

log-likelihood value of the fully saturated model versus the present model.  Minimum AICc and 

deviance values were used to choose the best fitting models, and likelihood ratio tests determined 

whether reduced models could describe the given data as adequately as more saturated models.   
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RESULTS 

From June 1999 to May 2002 over 1800 bottlenose dolphins were seen during 269 

sightings (Figure 4.2).  Fin matching was able to identify 133 uniquely distinguished individuals 

during 207 hours of active effort.  One individual was sighted six times, but most (58%) were  

seen only once (Figure 4.3).  On a seasonal scale, there was discernible variation in both the 

number of uniquely identified individuals as well as the minimum number of dolphins seen 

(Figures 4.2 and 4.4).  The seasonality of sightings of individuals that were seen only once was 

highest in three consecutive seasons in 2000 (Figure 4.4).  On-effort hours were plotted against 

the cumulative number of previously unseen marked dolphins to provide an approximate rate of 

addition of new individuals into the photo-identification catalog (not shown).  Another way of 

investigating this trend is to create a discovery curve of new individuals versus the total number 

of individuals seen during surveys (Figure 4.5).   The two values (t1 and t2) closest to the point 

at which the last 10% of cumulative individuals were seen were used to approximate the terminal 

rate of discovery.  Terminal rates of discovery were therefore between 0.001 and 0.030 new 

individuals per cumulative number of individuals seen during surveys for the final 8.1 % and 

12.4 % of cumulative data, respectively.   

Based on seasonal sighting histories of individual dolphins, I used CAPTURE to 

investigate the relative fit of the eight Otis models.  A multivariate discriminant function 

calculated a measure of relative model fit (Table 4.1).  As it is unlikely that any behavior 

modification occurred as a result of photo-identification surveys, these models were ranked in 

decreasing order of fit, with and without behavioral variation included.  Population estimates 

(N), standard errors (SE) and 95% confidence intervals (95% CI) were calculated for all models 

(Table 4.2).   The decreasing order of model fit for the four models without behavioral variation 
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Figure 4.2.  Seasonal summary of bottlenose dolphin (Tursiops truncatus) group size (average 
minimum number of individuals per group), group sighting frequency, and hours of survey effort 
in Barataria and Caminada Bays, Louisiana, from June 1999 – May 2002.    
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Figure 4.3.  Number of sightings for each naturally marked dolphin that was identified in the 
Barataria and Caminada Bay study area from June 1999 – May 2002. 
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Figure 4.4.  Seasonal tabulation of the total number of naturally marked dolphins identified in the 
Barataria and Caminada Bay study area from June 1999 – May 2002.  The number of dolphins 
seen only once is indicated in black, whereas the entire bar represents the total number of 
dolphins seen during a given season. 
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Figure 4.5.  ‘Discovery curve’ (Williams et al. 1993) plotting the trend between newly identified 
naturally marked dolphins (y-axis) versus the cumulative number of dolphins observed during 
survey effort (x-axis) in Barataria and Caminada Bays from June 1999 – May 2002.  The 
terminal slope (Wilson et al. 1999) was determined by looking at the slope of the last 8 (T1) and 
12 (T2) % of cumulative number of individuals seen during surveys. 
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Table 4.1.  Ranking of the eight closed-population unequal-catchability models (Otis et al. 1978) 
as assessed by the multivariate discriminant model selection criteria in Program CAPTURE.  
Rankings are based on maximum values and are presented with and without behavioral variation 
included in the model. 
 

Model Source of variation Criteria 

value 

Rank (with 

behavior) 

Rank (without 

behavior) 

M(o) None 0.51 3 1

M(h) Heterogeneity 0.43 6 3

M(b) Behavior 0.30 7 -

M(bh) Behavior, Heterogeneity 0.67 2 -

M(t) Time 0.00 8 4

M(th) Time, Heterogeneity 0.44 5 2

M(tb) Time, Behavior 0.49 4 -

M(tbh) Time, Behavior, Heterogeneity 1.00 1 -
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Table 4.2.  Barataria Bay system bottlenose dolphin population size estimates (Spring 2000 – 
Winter 2001/02) using closed-population unequal catchability models in Program CAPTURE 
 

Model Population 

Estimate 

Standard 

Error 

95% Confidence Limits 

M(o) 180 13.70 159 - 213

M(t)  177 13.07 157 - 209

M(t) Chao (1989) 198 23.06 166 - 258

M(b) 137 6.73 130 - 157

M(h) 238 24.64 199 - 297

M(h) Chao (1988) 217 28.40 176 - 290

M(h) Pollock & Otto (1983)  138 10.58 128 - 176

M(th) Chao et al. (1992) 220 28.93 178 - 294

M(tb) Burnham   139 11.86 127 - 182

M(bh)  136 11.31 127 - 180
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was: M(o), M(th), M(h) and M(t).  Model selection criteria for all four models were below the 

suggested cut-off score of 0.75; however, since these models are a subset of all eight models this 

may be a moot point.  Chi-square goodness-of-fit tests found that models including time and 

heterogeneity fit the data significantly better (α < 0.001) than the more general model M(o).  

Hence, the variability in sighting probabilities is difficult to conclusively explain.  All four  

models produced fairly similar population estimates; 138 – 238 with an associated 95% CL range 

of 128 – 297.  The only two models whose 95% CLs did not overlap with each other were the 

Pollock and Otto estimator for M(h) (95% CL = 128-176) and the Chao estimator for M(th) 

(95% CL = 178-294).    

 MARK was used to model sighting rates on a yearly, seasonal (with data combined 

across years), and seasonal (with data separated between years) scales.  In addition a constant 

rate of sighting was also investigated (Tables 4.3 – 4.7).  Likelihood-ratio tests showed that 

seasonal (data not combined across years) variability described the data significantly better than 

any other configuration of temporal variance (Table 4.3).  It should also be apparent that Models 

A and D (Table 4.3) are identical to CAPTURE models M(t) and M(o), respectively (Table 4.2).  

When temporal variability was broken down further into monthly time intervals, the resulting 

models became over-parameterized and produced singular estimates.   

DISCUSSION 

 The first photo-identification research effort for a bottlenose dolphin population in 

Louisiana’s Barataria Basin system offered several important conclusions and findings.  First, 

with regard to population size, this recent and year-round survey effort of bottlenose dolphins in 

Barataria and Caminada bays has produced an abundance estimate of between 138 and 238 

individuals for this region.  The population appears to be relatively closed with some evidence of 
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Table 4.3.  Program MARK closed-population models with year-specific seasonal (A), yearly 
(B), non-year-specific seasonal (C) and constant (D) capture probabilities ranked by minimal 
Aikaike’s Information Criterion corrected for small sample sizes (AICc) and lowest deviance 
values.  Likelihood ratio test (LRT) statistics were used to compare Models B, C and D with top-
ranking model A and included relevant chi-square values, degrees of freedom (DF) and p-values 
(p).  
 

 Variation in capture 

probability 

AICc Deviance LRT with Model A - 

Chi-square, DF (p) 

A Season (year-specific) - 45.46 124.19  

B Year -38.08 143.73 19.54, 6 (0.0033)

C Season (non-year-specific) -36.05 141.72 17.53, 4 (0.0015)

D Constant -25.70 158.12 33.93, 7 (< 0.0001)

 
Table 4.4.  Parameter estimates from a Program MARK closed-population model with seasonal 
(year-specific) probabilities of capture (Model A) where, p = sighting probability during 
specified time interval.  The estimated population size for Model A was 176.78 (95% CL = 
156.50 – 209.71).   
 
Sighting Probability - Time 

Interval 

Estimate Standard Error 95% Confidence Limits 

p - Spring 2000 0.14 0.03 0.09 - 0.21

p - Summer 2000 0.19 0.03 0.13 - 0.26

p - Fall 2000 0.24 0.04 0.17 - 0.32

p - Winter 2000/01 0.12 0.03 0.08 – 0.19

p - Spring 2001 0.10 0.02 0.06 – 0.15

p - Summer 2001 0.15 0.03 0.10 – 0.21

p - Fall 2001 0.12 0.03 0.08 – 0.18

p - Winter 2001/02 0.05 0.02 0.03 – 0.10
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Table 4.5.  Parameter estimates from a Program MARK closed-population model with yearly 
probabilities of capture (Model B) where, p = sighting probability during specified time interval, 
and N = population size estimate.  Time intervals used for 2000 and 2001 were Spring 2000 – 
Winter 2000/2001, and Spring 2001 – Winter 2001/2002, respectively.   The estimated 
population size for Model B was 178.34 (95% CL = 157.59 – 211.89). 
 

Sighting Probability –  

Time interval 

Estimate Standard Error 95% Confidence Limits 

p - 2000 0.17 0.02 0.14 - 0.21

p - 2001 0.10 0.01 0.08 - 0.13

 
Table 4.6.  Parameter estimates from a Program MARK closed-population model with seasonal 
probabilities of capture (Model C) where, p = sighting probability during specified time interval, 
and N = population size estimate.  The estimated population size for Model C was 178.21 (95% 
CL = 157.51 – 211.72). 
 

Sighting Probability –  

Time Interval 

Estimate Standard Error 95% Confidence Limits 

p - Spring  0.12 0.02 0.09 - 0.16  

p - Summer  0.17 0.02  0.12 - 0.22

p – Fall  0.18  0.02 0.13 - 0.23

p - Winter  0.09  0.02 0.06 - 0.12

 
Table 4.7.  Parameter estimates from a Program MARK closed-population model with constant 
probability of capture (Model D) where, p = probability of sighting throughout the study period, 
and N = population size estimate.  The estimated population size for Model D was 179.51 (95% 
CL = 158.42 – 213.52). 
 

Sighting Probability –  

Time Interval  

Estimate Standard Error 95% Confidence Limits 

p - constant 0.14 0.01 0.11 - 0.17
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site fidelity.  Furthermore, the documentation and identification of individual dolphins allows the 

possibility of comparisons with future studies both in the study area and with those catalogued in 

other areas of the Gulf of Mexico.  Secondly, with regard to variability in sighting probability  

both programs CAPTURE and MARK strongly indicated that sighting histories of bottlenose 

dolphins present in the Barataria Basin were variable over time and between individuals.  

However, determination of whether this variation in sighting probability was specifically 

attributable to temporal factors (such as season), differences in probability of capture for 

individuals, or a combination of these factors could not be resolved definitively.      

Population Size 

Barataria Bay has been recognized as a distinct stock by the U.S. Atlantic and Gulf of 

Mexico marine mammal stock assessments (Waring et al. 2002).  Directly seaward of this 

purported stock is the western Gulf of Mexico (wGOM) coastal bottlenose dolphin stock.  The 

wGOM stock is characterized as inhabiting the near-shore coastal waters (i.e., from the coastline 

or presumed bay boundary to 9.3 km seaward of the 18.3 m isobath) from the Texas border to the 

Mississippi River mouth.  Separation of Barataria Bay and wGOM coastal stocks is based on 

evidence of genetic differentiation between offshore and inshore stocks in other regions 

(Duffield and Wells 1986) as well as the assumption that the unique oceanographic regimes of 

inshore and offshore waters would limit movement.  The proximity of the Barataria Bay and 

wGOM stocks makes these distinctions difficult to confirm.  However, the meaning of a 

management stock in this context is not synonymous with the traditional biological definition of 

a population (Pollock et al. 1990).  The term is based on the description of a “community” (after 

Wells et al. 1987) in which dolphins have a high site-fidelity to the given area (so-called 

“residents”), possess similar genetic profiles, and interact primarily with each other.  This  
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definition permits the possibility of interbreeding with outside members as well as movement 

into and out of the stock management area.  Although a majority of the designated estuarine 

stocks within the Gulf of Mexico may not strictly fall within the definition of a biological 

population, they can be described as functioning units of their ecosystem and so are correctly   

considered discrete under the Marine Mammal Protection Act.  The 2002 U.S. Atlantic and Gulf 

of Mexico Marine Mammal Stock Assessments (Waring et al. 2002) suggests that “biologically-

based” criteria, such as movement patterns, genetic profiling and contaminant loads, be 

combined with traditional field observations to define stock memberships.   

High site fidelity has been noted in some coastal estuarine areas of the Gulf of Mexico 

(Scott et al. 1990, Wells 1991) but not all (Hubard 1998, Maze and Wursig 1999).  All 

population models used in my results were closed-population models.  My preliminary surveys 

of the region ascertained the geographic extent of this population.  However, it is unlikely that 

the closure assumption was strictly met, as evidenced by the high number of individuals sighted 

only once and the low incidence of re-sightings.  Alternatively, the discovery curve indicated a 

steady decrease in the number of new individuals seen as effort accumulated.  The terminal rate 

of discovery suggests that the Barataria Basin population was relatively closed (Figure 4.5).  The 

range of terminal slopes for this study (0.001 – 0.01) is comparable to Wilson et al.’s (1999) rate 

of 0.012 for sub-adults and 0.011 for adults in a closed bottlenose dolphin population in Moray 

Firth, Scotland.  However, as noted in Figure 4.3, a majority (77 out of 133 = 58%) of 

individuals were seen in Barataria Basin on only one occasion.   Additionally, my findings are 

weakened by the fact that this project was a new initiative and survey effort was limited.  

Furthermore, the detection of significant variability in both temporal and individual sighting 

rates makes my assumption of population closure provisional.   
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Extending the duration and geographical extent of the present study is required to 

strengthen my findings.  Proximity to the Western Gulf of Mexico coastal stock as well as the 

estuarine stock of the Terrebonne and Timbalier bay complex makes interchange with each of 

these purported populations a plausible occurrence.  However, whether these possible 

interactions are in accord with the flexible Wells et al. (1987) population definition and therefore 

mirror the social structure of western Florida estuarine stocks, or suggest that the Barataria bay 

stock is in fact part of a larger northern Gulf of Mexico meta-population requires further 

investigation.   

Variability in Sighting Probability 

There are many reasons why individuals have unique probabilities of being sighted 

during observation periods (Hammond 1990).  Individual attributes such as age, gender, social 

status, and stock association are possible factors influencing both distribution and behavior 

patterns.  Environmental conditions such as movement of potential prey, proximity to fishing 

vessels, and oceanographic features may also influence sighting probability on a given survey.  It 

is also important to consider possible bias introduced by such avenues as data acquisition, 

verification of image matching and distinction, and modeling strategy. 

Survey strategy can also cause some additional heterogeneity in capture.  Non-random 

mixing of individuals may allow some animals to be seen more often.  Moreover, surveys that 

are not randomized or comprehensive in their coverage of a population’s range will also 

introduce heterogeneity.  In these surveys I attempted to minimize heterogeneity by introducing a 

stratified survey design to ensure that no regions of the study area were preferentially covered or 

confounded with time of day.  Results from model outputs indicated that temporal variability 

was significant.  The occurrence and relative frequency of individuals sighted appeared to be 
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different between 2000 and 2001 (Figures 4.2 and 4.4), yet this configuration (i.e., yearly 

variation in capture only) was not the best fit for the data according to MARK (Table 4.3).   A 

closer look at the data revealed that these differences appeared to be driven by the small numbers 

of recaptures in Spring 2001 and Winter 2001/2002.  Effort during both of these seasons was 

comparable to other months, though number of groups seen in Winter 2001/2002 did appear to 

be slightly lower (Figure 4.2).  Logbook entries made during Winter 2001/2002 also indicated 

that climatic conditions were not ideal for taking photographs.  However, survey routes during 

both seasons were random, covered the study area well, and had experienced observers aboard at 

all times.  It may be possible that unknown behavioral processes, a unique age structuring of the 

population, or activities in the area may have been the cause of these anomalies in number of re-

sightings.   

Sources of variability in capture may mask each other to produce ambiguity in 

interpretation of model results (Otis et al. 1978).  Although some of the tests in CAPTURE lack 

power, null hypotheses were being rejected and so the conclusions are most likely accurate.  

Relative effort and number of re-sightings can also affect model results. Precision is positively 

correlated with increasing capture probability (Cormack 1968).  In my Program MARK results 

(Tables 4.4 – 4.7) capture probabilities ranged from 0.05 to 0.24 with a mean of approximately 

0.14, and fell between the medium (mean ≈ 0.20) to poor (mean ≈ 0.05) classifications of data.  

Using simulated data, Otis et al. (1978) found medium quality data to correctly select the models 

M(o), M(th), M(h) and M(t) with the following percentages:  68.0, 25.5, 66.5 and 57.5.  For poor 

data these percentages changed to 79.0, 5.0, 18.5 and 83.5, respectively.  It should be noted that 

selection of the incorrect model for the simulated data did not always results in estimates that 

were significantly different from the true population size. 
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In addition to the assumptions of population closure and equal catchability, the 

population models used in this study also require that marks are not lost and that marks are 

correctly identified.  Therefore, the natural marking used on individuals must be permanent and 

sufficiently distinct for the duration of the study, and the images used for each individual must be 

of sufficient quality to allow consistent identification.  Lockyer and Morris (1990) found 

superficial and deeper scratches, as well as minor wounds to be inadequate natural markings on 

bottlenose dolphins.  They also found that the head, back, dorsal fin and tail flukes were the most 

likely areas for permanent markings.  Wursig and Wursig (1977) noted that both pigment spots 

and bite marks did not remain visible throughout their study of bottlenose dolphins in Argentina.  

I found dorsal fin nicks and notches to be suitable and effective natural markings for my study.  

However, as Hammond (1986) cautions it is important to note that evidence of persistence of a 

given type of mark does not guarantee identical results from similar wounds.  The loss of natural 

markings would cause population estimates to be inflated.   

Treatment of processed images is the next step in ensuring that bias does not enter an 

abundance assessment.  It is imperative that the quality of images used is consistently excellent.  

Image quality classification must be made independently of the presence or extent of natural 

markings present on the individual (Friday et al. 2000).  This independence ensures that the most 

distinctive individuals will not be preferentially included or matched.  For accurate population 

estimates it is also important that non-preferential picture acquisition is practiced.  Finally, 

matching efficiency of bottlenose dolphin natural fin markings has greatly benefited by the 

description of the dorsal fin ratio methods by Defran et al. (1990), as well as the Finscan 

software developed by Kreho et al. (1999), to assist and speed up a related process.   
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CONCLUSIONS 

 Both similarities and differences in residency patterns of individual bottlenose dolphins 

present in Barataria and Caminada bays, as compared with other regions of the Gulf of Mexico 

contribute to the understanding of population dynamics for this region.  Valuable insight into the 

life history patterns of bottlenose dolphin populations can also be achieved by investigating 

population models that are able to account for differences in sighting rates.  Significant 

variability in probability of sighting was found on both temporal and individual scales.  

However, several other confounding sources affecting the behavior and distribution patterns of 

wild bottlenose dolphin populations require consideration also (Hammond et al. 1990).  Social 

stability and associations have been well established in cetacean populations (Bigg et al. 1990, 

Wells 1991).  The inherent lack of independence between social affiliates violates assumptions 

of many basic closed-population models.  Although this matter requires further investigation, it 

potentially affects precision but not necessarily the accuracy of estimators (Wilson et al. 1999).  

Another factor worthy of consideration is the role that type of activity and group size play in the 

ability to detect a given individual or group.  For example, it seems logical that larger groups or 

highly acrobatic behaviors would be more visible during surveys.  Likewise, one or two 

individuals engaged in activities with relatively long dive times would be correspondingly more 

difficult to detect.  Some detectability models have been developed (Steinhorst and Samuel 

1989) but are not widely incorporated in marine mammal research currently.  Additional 

concerns such as the presence of boat traffic, fishing vessels, and recreational activities in the 

area all figure into the ability to detect and sample individual dolphins.  The use of unequal-

catchability models is a starting point for assessing some of these factors, yet it is far from a 

comprehensive solution.  An appropriate future direction is to investigate models that are able to 
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include some of the above-mentioned covariates, such as Forney et al. (1991) was able to do with 

sea-state in a model for harbor porpoise.  Furthermore, the delineation of behavioral or 

demographic strata of the population with specific sighting rates should also act to increase the 

relative precision of resulting estimates.  In short, any quantitative or qualitative variable that is 

able to help identify patterns of cetacean distribution is a useful tool for better understanding 

marine mammal populations and improving the precision and accuracy of population 

assessments.  
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CHAPTER V 

DISCUSSION 

 The bottlenose dolphin (Tursiops truncatus) is a well-studied member of the Order 

Cetacea (Shane et al. 1986, Leatherwood and Reeves 1990) and has been observed in a wide 

variety of habitats worldwide (Connor and Smolker 1985, Cockroft et al. 1990, Ballance 1992, 

Williams et al. 1993, Grigg and Markowitz 1997, Harzen 1998, Wilson et al. 1999).  Although 

several projects have focused on bottlenose dolphin populations and “communities” (see Wells et 

al. 1987) within the northern Gulf of Mexico (Shane 1980, Wells et al. 1987, Mullin 1988, Scott 

et al. 1990, Wells and Scott 1990, Wells 1991, Brager 1993, Hubard 1998, Maze and Wursig 

1999), there has been limited research effort along the Louisiana coast (Hubard and Swartz 2002, 

Waring et al. 2002).  This study focused on the ecology of bottlenose dolphins in lower Barataria 

and Caminada bays, Louisiana, by combining fine-scale measurements of habitat use and 

individual identification techniques to describe environmental requirements (Chapter II) and 

estimate population size (Chapter IV).  The latter portion of the field research was further 

investigated by examining assumptions of the Jolly-Seber model when used to estimate 

population size of cetaceans from photo-identification data (Chapter III).  This research is 

important because dynamic changes in the Louisiana coastal zone place unknown stressors on 

the poorly studied bottlenose dolphins in this area.  However, trends in abundance can only be 

determined when satisfactory survey methodology and analyses are used to estimate population 

size from recent survey effort.   

There are several factors that make the Barataria Bay system an interesting location for 

small cetacean research.  Barataria and Caminada bays represent the seaward interface of the 

Barataria Basin with the northern Gulf of Mexico (Reed 1995).  The low-lying inland wetlands 
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include marsh grasses, submerged aquatic vegetation and estuarine ponds (Chesney et al. 2000).  

Estuarine areas are known to provide important nursery habitat to fishes and crustaceans (Baltz 

et al. 1998) and have high primary productivity rates (Day et al. 1989, Garrison 1999).  

However, the Louisiana coastline has undergone significant changes in recent years (Day et al. 

1995, Turner 1997).  In fact, coastal wetland losses from 1955 to 1978 are estimated to have 

been as high as 12,700 ha per annum (Baumann and Turner 1990).  The continued modification 

of habitat may have serious repercussions for numerous species in coastal Louisiana ecosystems 

(Chesney et al. 2000), including bottlenose dolphins.  

The description of bottlenose dolphin environmental usage patterns of the Barataria Basin 

system developed by this study strengthens the database for appropriate management of this 

relatively discrete Gulf of Mexico stock.  Firstly, the unique and changing environment makes it 

especially important to develop a defendable baseline study of present bottlenose dolphin 

population size so that any trends associated with habitat loss may be detected.  Secondly, the 

characterization of environmental requirements is valuable because dissimilar oceanographic 

conditions are cited as one reason for the existence of distinctive inshore and offshore bottlenose 

dolphin stocks in coastal Louisiana and elsewhere in the northern Gulf of Mexico (Duffield et al. 

1983, Duffield and Wells 1986, Waring et al. 2002).  Therefore, the careful description of the 

habitat use by an inshore stock may allow specific differences with the environment of offshore 

stocks to be detected.  It should be noted that environmental habitat usage patterns described in 

this study characterized habitat selection of measured variables at sites where individuals were 

observed, but not where they were absent.  The basic advantage of this approach is that it uses 

the bottlenose dolphin’s behavior to describe its distribution and abundance in the system and 

creates a description of environmental requirements from a dolphin’s point-of-view (Baltz 1990, 
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Chesney et al. 2000).  Future research that is able to accurately characterize the entire study area 

could provide insights into habitat usage for general and specific activities.  I addressed this in a 

limited fashion using suitability analyses (Chapter II) to compare general habitat use and feeding 

site selection, but a better characterization of resource availability would greatly increase our 

understanding of bottlenose dolphin ecology in the Barataria Basin.  Likewise, the inclusion of 

additional environmental variables (such as water velocity, density of boat traffic and presence of 

prey) as related to patterns of habitat use would clearly enhance insights into possible 

interactions within the Barataria Basin ecosystem.          

Using closed-population unequal-catchability models (Otis et al. 1978) I estimated that 

138 – 238 (with associate range of 95% Confidence Limits = 128 – 297) (Chapter IV) bottlenose 

dolphins were present in my study area.  While this is an important contribution to knowledge of 

bottlenose dolphins in this area, continued year-round monitoring of this population is necessary 

to detect possible declines and seasonal fluctuations in abundance levels.  A methodology for 

assessing the status of U.S. marine mammal stocks was developed by Wade and Angliss (1997) 

with limits of mortality being determined by calculation of the potential biological removal 

(PBR) for the given population (Wade 1997).  The PBR is a fisher-related mortality limit which 

is derived from the product of the minimum population size (i.e., the lower 20th percentile of the 

distribution of the abundance estimate), maximum population growth rate of the population, and 

a “recovery factor” based on relative status of the population relative to optimum sustainable 

population (OSP) (Waring et al. 2002).  The current PBR of 1.4 individuals for the Barataria Bay 

stock (Waring et al. 2002) is based on a population size of 219 individuals as estimated by aerial 

surveys conducted over a decade ago (Blaylock and Hoggard 1994).  This population estimate 

falls well within the range of estimates produced from my dissertation research.  However, if the 
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lower end of my estimates accurately reflects current population levels, the management strategy 

is misjudging the influence that fishery-related mortalities place on this population and PBR 

levels should be lowered.   

The determination of population closure for the Barataria system was based on 

decreasing numbers of previously unseen marked individuals as survey effort accumulated, as 

well as evidence of some degree of site-fidelity for numerous individuals.  However, clarification 

of this tentative characterization as a closed population would obviously benefit from continued 

research efforts in and adjacent to the study area.  As noted in my examination of Jolly-Seber 

model assumptions (Chapter III) it is imperative that any samples taken be representative of the 

true population in order for accurate and precise estimates to be made.  Extending the duration, 

intensity and coverage of this initial photo-identification study is an obvious and necessary first 

step toward satisfying this requirement.  Specifically, the geographic range, temporal variation in 

abundance, and site-fidelity of uniquely identified individuals could be confirmed and more 

definitively understood.  For example, performing similar surveys in regions overlapping the 

southern end of my study area and extending out onto the central Louisiana coast would be one 

way to address pertinent stock structure questions. 

   Findings from this research provide an innovative approach to describing environmental 

habitat use for dolphins, highlight the necessity to assess statistical methodology when 

estimating population size from cetacean photo-identification data, and aid in filling important 

gaps in the understanding of northern Gulf of Mexico bottlenose dolphin stock structure and 

population dynamics (Hubard and Swartz 2002).     
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APPENDIX 
 

CATALOG OF INDIVIDUALS AND ADDITIONAL SIGHTING MAPS 
 

Catalog of Individuals 
 
Titles refer to the number and location of identifying marks present on an individual’s dorsal fin.  
Individual refers to the catalogue number assigned to the dolphin, and observation is the 
sequential group number the individual was observed with.   
 
One notch on trailing edge 

  
Individual Observation Date Season-yr  Lat Long  
1  80 23-Sep-00 Fall_00  29.27155 -89.967  
1  93 5-Oct-00 Fall_00  29.19798 -90.0482  
2  53 28-May-00 Spr_00  29.27005 -89.9574 
3  144 14-Jan-01 Win_0/1  29.30162 -89.9785  
3  151 10-Feb-01 Win_0/1  29.20502 -90.042  
3  227 15-Sep-01 Fall_01  29.20872 -90.0746  
4  77 22-Sep-00 Fall_00  29.22245 -90.0404 
4  117 14-Dec-00 Win_0/1  29.26417 -89.9591  
5  61 9-Jul-00 Sum_00  29.23688 -90.0074  
5  198 20-Jun-01 Sum_01  29.275 -89.937  
6  69 20-Aug-00 Sum_00  29.20288 -90.0828  
6  224 15-Sep-01 Fall_01  29.20952 -90.0451  
6  243 11-Nov-01 Fall_01  29.19912 -90.0806  
7  84 23-Sep-00 Fall_00  29.28728 -89.9372 
7  209 8-Aug-01 Sum_01  29.27967 -89.954  
7  259 21-Dec-01 Win_1/2  29.20743 -90.0428  
8  205 21-Jun-01 Sum_01  29.21028 -90.0611  
9  47 30-Mar-00 Spr_00  29.28162 -89.9639  
10  77 22-Sep-00 Fall_00  29.22245 -90.0404  
10  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
11  87 24-Sep-00 Fall_00  29.2458 -89.999  
12  94 5-Oct-00 Fall_00  29.26652 -89.9926  
12  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
12  157 10-Feb-01 Win_0/1  29.26385 -89.959  
12  198 20-Jun-01 Sum_01  29.275 -89.937  
12  207 21-Jun-01 Sum_01  29.21948 -90.0496  
12  227 15-Sep-01 Fall_01  29.20872 -90.0746  
13  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
14  67 19-Aug-00 Sum_00  29.35502 -89.9783  
15  94 5-Oct-00 Fall_00  29.26652 -89.9926  
15  211 8-Aug-01 Sum_01  29.2778 -89.9531  
16  188 16-May-01 Spr_01  29.34312 -89.8912  
16  195 20-Jun-01 Sum_01  29.26647 -89.9628  
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17  64 19-Aug-00 Sum_00  29.24438 -89.9988  
17  141 13-Jan-01 Win_0/1  29.2692 -89.9603  
18  172 24-Mar-01 Spr_01  29.28703 -89.9351  
18  212 8-Aug-01 Sum_01  29.2805 -89.9447  
19  48 30-Mar-00 Spr_00  29.30048 -89.9809  
20  41 29-Mar-00 Spr_00  29.26372 -89.9601  
20  79 23-Sep-00 Fall_00  29.256 -89.9825  
20  246 11-Nov-01 Fall_01  29.23607 -90.011  
20  258 21-Dec-01 Win_1/2  29.23112 -90.026  
20  264 3-Feb-02 Win_1/2  29.23687 -90  
21  153 10-Feb-01 Win_0/1  29.21233 -90.0732  
22  1 10-Jun-99 Sum_99  29.2675 -89.9517  
22  37 29-Mar-00 Spr_00  29.2076 -90.0806  
22  62 9-Jul-00 Sum_00  29.24905 -90.0015  
22  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
22  220 9-Aug-01 Sum_01  29.20192 -90.0817  
22  230 15-Sep-01 Fall_01  29.26387 -89.9642  
23  78 23-Sep-00 Fall_00  29.24643 -90.003  
24  62 9-Jul-00 Sum_00  29.24905 -90.0015  
24  77 22-Sep-00 Fall_00  29.22245 -90.0404  
24  151 10-Feb-01 Win_0/1  29.20502 -90.042  
24  197 20-Jun-01 Sum_01  29.27368 -89.9521  
25  184 16-May-01 Spr_01  29.30162 -89.9758  
25  204 20-Jun-01 Sum_01  29.23347 -90.0134  
25  212 8-Aug-01 Sum_01  29.2805 -89.9447  
26  61 9-Jul-00 Sum_00  29.23688 -90.0074  
27  181 16-May-01 Spr_01  29.25817 -89.9896  
27  226 15-Sep-01 Fall_01  29.21653 -90.0492  
28  44 30-Mar-00 Spr_00  29.20173 -90.0759  
29  44 30-Mar-00 Spr_00  29.20173 -90.0759  
30  60 9-Jul-00 Sum_00  29.23585 -90.0244  
31  212 8-Aug-01 Sum_01  29.2805 -89.9447  
32  67 19-Aug-00 Sum_00  29.35502 -89.9783  
33  231 16-Sep-01 Fall_01  29.273 -89.9652  
34  232 16-Sep-01 Fall_01  29.2982 -89.9755  
34  259 21-Dec-01 Win_1/2  29.20743 -90.0428  
35  232 16-Sep-01 Fall_01  29.2982 -89.9755  
35  259 21-Dec-01 Win_1/2  29.20743 -90.0428  
36  233 16-Sep-01 Fall_01  29.30873 -89.9833  
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Two notches on trailing edge 
 

Individual Observation Date          Season-yr      Lat          Long 
37  157 10-Feb-01 Win_0/1  29.26385 -89.959  
38  60 9-Jul-00 Sum_00  29.23585 -90.0244  
38  61 9-Jul-00 Sum_00  29.23688 -90.0074  
38  117 14-Dec-00 Win_0/1  29.26417 -89.9591  
39  37 29-Mar-00 Spr_00  29.2076 -90.0806  
39  114 11-Nov-00 Fall_00  29.21315 -90.084  
39  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
40  129 15-Dec-00 Win_0/1  29.208 -90.0746  
40  153 10-Feb-01 Win_0/1  29.21233 -90.0732  
41  33 29-Mar-00 Spr_00  29.29168 -89.9308  
41  103 10-Nov-00 Fall_00  29.2625 -89.9542  
41  109 11-Nov-00 Fall_00  29.25095 -89.9917  
41  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
42  57 24-Jun-00 Sum_00  29.30798 -89.9872  
43  48 30-Mar-00 Spr_00  29.30048 -89.9809  
44  47 30-Mar-00 Spr_00  29.28162 -89.9639  
45  53 28-May-00 Spr_00  29.27005 -89.9574  
45  58 24-Jun-00 Sum_00  29.33182 -89.9857  
45  65 19-Aug-00 Sum_00  29.26877 -89.9581  
45  264 3-Feb-02 Win_1/2  29.23687 -90  
46  157 10-Feb-01 Win_0/1  29.26385 -89.959  
47  62 9-Jul-00 Sum_00  29.24905 -90.0015  
48  44 30-Mar-00 Spr_00  29.20173 -90.0759  
49  47 30-Mar-00 Spr_00  29.28162 -89.9639  
50  37 29-Mar-00 Spr_00  29.2076 -90.0806  
50  152 10-Feb-01 Win_0/1  29.21497 -90.0463  
50  205 21-Jun-01 Sum_01  29.21028 -90.0611  
50  219 9-Aug-01 Sum_01  29.20372 -90.0839  
51  65 19-Aug-00 Sum_00  29.26877 -89.9581  
52  77 22-Sep-00 Fall_00  29.22245 -90.0404  
52  214 8-Aug-01 Sum_01  29.28643 -89.9357  
53  101 10-Nov-00 Fall_00  29.2725 -89.9713  
54  64 19-Aug-00 Sum_00  29.24438 -89.9988  
54  77 22-Sep-00 Fall_00  29.22245 -90.0404  
55  95 5-Oct-00 Fall_00  29.26845 -89.9586  
55  99 6-Oct-00 Fall_00  29.27008 -89.9583  
55  180 16-May-01 Spr_01  29.24597 -90.0021  
55  191 17-May-01 Spr_01  29.22945 -90.0243  
55  193 17-May-01 Spr_01  29.2301 -90.0239  
56  79 23-Sep-00 Fall_00  29.256 -89.9825  
56  153 10-Feb-01 Win_0/1  29.21233 -90.0732  
57  18 23-Aug-99 Sum_99  29.2722 -89.9536  
58  205 21-Jun-01 Sum_01  29.21028 -90.0611  
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59  18 23-Aug-99 Sum_99  29.2722 -89.9536  
60  77 22-Sep-00 Fall_00  29.22245 -90.0404  
60  93 5-Oct-00 Fall_00  29.19798 -90.0482  
62  53 28-May-00 Spr_00  29.27005 -89.9574  
63  234 16-Sep-01 Fall_01  29.31172 -89.9852  
64  232 16-Sep-01 Fall_01  29.2982 -89.9755  
65  219 9-Aug-01 Sum_01  29.20372 -90.0839  
65  220 9-Aug-01 Sum_01  29.20192 -90.0817  
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Three notches on trailing edge 

 
Individual Observation Date          Season-yr      Lat          Long 
67  77 22-Sep-00 Fall_00  29.22245 -90.0404  
68  17 23-Aug-99 Sum_99  29.2671 -89.9619  
69  64 19-Aug-00 Sum_00  29.24438 -89.9988  
69  112 11-Nov-00 Fall_00  29.21932 -90.0492  
69  172 24-Mar-01 Spr_01  29.28703 -89.9351  
69  202 20-Jun-01 Sum_01  29.26262 -89.9728  
70  110 11-Nov-00 Fall_00  29.25267 -89.9929  
70  203 20-Jun-01 Sum_01  29.2406 -90.0055  
71  99 6-Oct-00 Fall_00  29.27008 -89.9583  
71  203 20-Jun-01 Sum_01  29.2406 -90.0055  
71  208 8-Aug-01 Sum_01  29.26543 -89.9587  
72  48 30-Mar-00 Spr_00  29.30048 -89.9809  
73  55 24-Jun-00 Sum_00  29.2332 -90.0187  
74  224 15-Sep-01 Fall_01  29.20952 -90.0451  
75  260 2-Feb-02 Win_1/2  29.26222 -89.961  
76  95 5-Oct-00 Fall_00  29.26845 -89.9586  
76  232 16-Sep-01 Fall_01  29.2982 -89.9755  
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Four or more notches on trailing edge 
 

Individual Observation Date          Season-yr      Lat          Long 
77  44 30-Mar-00 Spr_00  29.20173 -90.0759  
78  39 29-Mar-00 Spr_00  29.2535 -89.9834  
78  62 9-Jul-00 Sum_00  29.24905 -90.0015  
78  77 22-Sep-00 Fall_00  29.22245 -90.0404  
78  205 21-Jun-01 Sum_01  29.21028 -90.0611  
79  48 30-Mar-00 Spr_00  29.30048 -89.9809  
79  64 19-Aug-00 Sum_00  29.24438 -89.9988  
79  73 20-Aug-00 Sum_00  29.25158 -89.9802  
80  65 19-Aug-00 Sum_00  29.26877 -89.9581  
81  172 15-May-01 Spr_01  29.28703 -89.9351  
81  206 21-Jun-01 Sum_01  29.21062 -90.0951  
81  226 15-Sep-01 Fall_01  29.21653 -90.0492  
82  84 23-Sep-00 Fall_00  29.28728 -89.9372  
83  9 16-Jul-99 Sum_99  29.2825 -89.9175  
83  44 30-Mar-00 Spr_00  29.20173 -90.0759  
84  41 29-Mar-00 Spr_00  29.26372 -89.9601  
85  64 19-Aug-00 Sum_00  29.24438 -89.9988  
85  67 19-Aug-00 Sum_00  29.35502 -89.9783  
85  90 5-Oct-00 Fall_00  29.27178 -89.9549  
85  203 20-Jun-01 Sum_01  29.2406 -90.0055  
85  208 8-Aug-01 Sum_01  29.26543 -89.9587  
85  230 15-Sep-01 Fall_01  29.26387 -89.9642  
86  226 15-Sep-01 Fall_01  29.21653 -90.0492  
87  165 24-Mar-01 Spr_01  29.27168 -89.9633  
87  224 15-Sep-01 Fall_01  29.20952 -90.0451  
89  37 29-Mar-00 Spr_00  29.2076 -90.0806  
89  60 9-Jul-00 Sum_00  29.23585 -90.0244  
90  60 9-Jul-00 Sum_00  29.23585 -90.0244  
90  229 15-Sep-01 Fall_01  29.2556 -89.9725  
91  191 17-May-01 Spr_01  29.22945 -90.0243  
92  47 30-Mar-00 Spr_00  29.28162 -89.9639  
93  89 5-Oct-00 Fall_00  29.26613 -89.9615  
94  93 5-Oct-00 Fall_00  29.19798 -90.0482  
95  193 17-May-01 Spr_01  29.2301 -90.0239  
96  180 16-May-01 Spr_01  29.24597 -90.0021  
97  196 20-Jun-01 Sum_01  29.26948 -89.9474  
97  207 21-Jun-01 Sum_01  29.21948 -90.0496  
98         61                    9-Jul-00 Sum_00                  29.23688 -90.0074 
99         60                    9-Jul-00 Sum_00                  29.23585 -90.0244 
100         84                23-Sep-00  Fall_00                  29.28728 -89.9372 
101         180               16-May-01   Spr_01                  29.24597 -90.0021 
102          98                   6-Oct-00 Fall_00                29.26355 -89.9625 
102        258                 21-Dec-01 Win_1/2                29.23112 -90.026 
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103          64                 19-Aug-00 Sum_00                29.24438 -89.9988 
104          64                 19-Aug-00 Sum_00                29.24438 -89.9988 
105          64                 19-Aug-00 Sum_00                29.24438 -89.9988 
106              98 6-Oct-00 Fall_00                29.26355 -89.9625 
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Notches present at tip of fin 
 
Individual Observation Date Season-yr  Lat Long  
107            9                 05-Oct-00 Fall_00  29.27178 -89.9549 
107        117                14-Dec-00 Win_0/1                  29.26417 -89.9591 
107       178                15-May-01 Spr_01                  29.26842 -89.9575 
107       203                 20-Jun-01 Sum_01                  29.2406  -90.0055 
107       208                  8-Aug-01 Sum_01                  29.26543 -89.9587 
108          84                  23-Sep-00 Fall_00                  29.28728 -89.9372 
108          90                  5-Oct-00 Fall_00                  29.27178 -89.9549 
109          89                  5-Oct-00 Fall_00                  29.26613 -89.9615 
109          182                  16-May-01 Spr_01                  29.29512 -89.972 
109          209                  8-Aug-01 Sum_01                  29.27967 -89.954 
110          61                  9-Jul-00                  Sum_00                  29.23688 -90.0074 
110          73                  20-Aug-00 Sum_00                  29.25158 -89.9802 
110           93                   5-Oct-00 Fall_00                  29.19798 -90.0482 
111          157                  10-Feb-01 Win_0/1                  29.26385 -89.959 
112          158                  10-Feb-01 Win_0/1                  29.2679 -89.9582 
112          165                  24-Mar-01 Spr_01                  29.27168 -89.9633 
112         167                 24-Mar-01 Spr_01                  29.30178 -89.9763 
112  270 3-May-02 Spr_02  29.26647 -89.9628  
113  66 19-Aug-00 Sum_00  29.29245 -89.9752  
114  53 28-May-00 Spr_00  29.27005 -89.9574  
115  101 10-Nov-00 Fall_00  29.2725 -89.9713  
115  116 11-Nov-00 Fall_00  29.19923 -90.0454  
116  80 23-Sep-00 Fall_00  29.27155 -89.967  
117  99 6-Oct-00 Fall_00  29.27008 -89.9583  
118  95 5-Oct-00 Fall_00  29.26845 -89.9586  
119  64 19-Aug-00 Sum_00  29.24438 -89.9988  
120  219 9-Aug-01 Sum_01  29.20372 -90.0839  
120  232 16-Sep-01 Fall_01  29.2982 -89.9755  
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Notches present on leading edge  
 

Individual Observation Date          Season-yr      Lat          Long 
121  55 24-Jun-00 Sum_00  29.2332 -90.0187  
121  154 10-Feb-01 Win_0/1  29.1968 -90.0837  
121  194 17-May-01 Spr_01  29.24932 -89.988  
121  226 15-Sep-01 Fall_01  29.21653 -90.0492  
121  251 20-Dec-01 Win_1/2  29.21628 -90.0493  
122  204 20-Jun-01 Sum_01  29.23347 -90.0134  
122  219 9-Aug-01 Sum_01  29.20372 -90.0839  
123  251 20-Dec-01 Win_1/2  29.21628 -90.0493  
124  151 10-Feb-01 Win_0/1  29.20502 -90.042  
125  44 30-Mar-00 Spr_00  29.20173 -90.0759  
126  169 24-Mar-01 Spr_01  29.34215 -89.9847  
126  170 24-Mar-01 Spr_01  29.3543 -89.9687  
127  1 10-Jun-99 Sum_99  29.2675 -89.9517  
128  195 20-Jun-01 Sum_01  29.26647 -89.9628  
129  53 28-May-00 Spr_00  29.27005 -89.9574  
130  18 23-Aug-99 Sum_99  29.2722 -89.9536  
131  63 9-Jul-00 Sum_00  29.26613 -89.9639  
132  25 10-Dec-99 Win_9/0  29.2726 -89.9513  
132  185 16-May-01 Spr_01  29.30913 -89.9822  
132  197 20-Jun-01 Sum_01  29.27368 -89.9521  
133  64 19-Aug-00 Sum_00  29.24438 -89.9988  
134  93 5-Oct-00 Fall_00  29.19798 -90.0482  
134  101 10-Nov-00 Fall_00  29.2725 -89.9713  
135  112 11-Nov-00 Fall_00  29.21932 -90.0492  
135  150 10-Feb-01 Win_0/1  29.20493 -90.0446  
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Sighting locations of individual bottlenose dolphins seen only once during surveys of Barataria and Caminada Bays, 
Louisiana, from June 1999 to May 2002. 

 

Additional Sighting Maps 
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Sighting locations of individual bottlenose dolphins seen three times during surveys of Barataria and Caminada Bays, 
Louisiana, from June 1999 to May 2002. 



www.manaraa.com

 124

#Y

#Y

#Y

#Y

&

&
&

&

$

$

$

$

#³

#³

#³

#³

%a
%a

%a

%a

#

#

#

#

Ú

Ú

Ú

ÚÚ

#0

#0
#0

#0

#0

%[

%[

%[

%[%[

%

%

%
%

%

#S

#S

#S

#S

#S

#S

2 0 2 4 Miles

S

N

EW

 
 

Sighting locations of individual bottlenose dolphins seen three times during surveys of Barataria and Caminada Bays, 
Louisiana, from June 1999 to May 2002. 
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